potix

ZK: Developer's Guide

SIMPLY RICH

Z KTM

The Developer's Guide
Version 2.3.0

March 2007

Potix Corporation

Revision 136

Page 1 of 211

Potix Corporation

Copyright © Potix Corporation. All rights reserved.

The material in this document is for information only and is subject to change without notice. While reasonable efforts have
been made to assure its accuracy, Potix Corporation assumes no liability resulting from errors or omissions in this document,
or from the use of the information contained herein.

Potix Corporation may have patents, patent applications, copyright or other intellectual property rights covering the subject
matter of this document. The furnishing of this document does not give you any license to these patents, copyrights or other

intellectual property.

Potix Corporation reserves the right to make changes in the product design without reservation and without notification to its
users.

The Potix logo and ZK are trademarks of Potix Corporation.

All other product names are trademarks, registered trademarks, or trade names of their respective owners.

ZK: Developer's Guide Page 2 of 211 Potix Corporation

Table of Contents

3 TR 1 3 o o T 1T ot oo T o 15
Traditional Web AppliCatioNs.ot eaas 15
Ad-hoC AJAX AP PIICAtIONS. .ttt e 15
4 ST 1= L A o = PP 16
4 G o 1= o o K Lo P 17
4 G 1 =1 of o] 1 18

2. Getting Started..........cciiiiii i r 19
[L= 1 T TV e T [1 PP 19
LY o= = Tt o AV Y PP 19
B =T 4=Tel T oL ol =] =1 o 0 =T o | o PP 20

LAl Tel T o 1o LT =1 o Vo U T= T =P 21
The Scripting Codes in @ Separate File.....ooiiiiii e e 21
The attribute Element. .. i e e e e 21
LI LS = I =t o =TS Lo 1= 22
LI TS Lo I ol a1 T 1= 23
The if and unless AtEribDULES. ... e 23
The forEach At DULE. ... e e e 23
The USE AL DU . e e e e e r e r e e e e 24
Implement Java Classes iN ZSCIi Pt . ..ttt e a e aeeenes 25
Create Components ManuUally.....ooeiiriiiii i e e e e e e e aaeas 25
Developing ZK Applications without ZUML........coiiiiiiii i a e 26
Define New Components for @ PartiCular Page.......ocvvriiiiiiiiiiii i e e raenenaens 27

2 I 3 L= 7= T T o 28

F A ol T =Tt U I @ =T T 1P 28

AL =Gl UL o o T [0 PP 29
Components, Pages and DeSKEOPS. ...uuuiiiiiiiie it serarsasesieraseanerarrane e sane e rnnsaneaneanes 29
(60T 0 1010 =T 0L 29
5T 29

= T T I 30

LT Q] 03 30
The createComponents MEthod.......couiieiii it eaaens 30
Forest of Trees of CoOmMPONENTES.t e e e e neeenees 30

ZK: Developer's Guide Page 3 of 211 Potix Corporation

Component: a Visual Representation and a Java Object........ccovviiiiiiiiiicie e 30

| o L=] =] = PP 31
LU PP 31

QLI L 2 o= o 32
N a gt o= TolI=Ta [B | B 2 CY o = ol P 33
Variable and Functions Defined in ZSCripl........ooiiiiiii e 33
getVariable versus getZScriptVariable.o 34
pA=Tol o[o) f=] o o I = I covd o] =111 o] o - PP 35

=Y o 36
Desktops @and EVENE PrOCESSINGuuee ettt ettt et et e e et e e e e e n e e eeaneeaaes 36
Desktops and the Creation of CoOmMPONENtS.ciiiiiiii i e e e e s 37
ZUML @nd XML Nam @S PDaACES . .1t uttiutittstesatassssssansasssesassasssansassssssansasssnesansansrnesneseinnmes 37
4. The Component LifeCyCle....cuiiiiiaiiiiaiarnn s sassessasssa s s s sassnssnsassasansasnnsnsnnnnnnns 38
The Lifecycle of Loading Pages. ..o e e e e e e aaeeas 38
The Page Initial Phase.c.o i e e e s e s e e e rne s 38
The Component Creation Phase.....cvii i i s r e e r e e ane e anes 38
The Event ProCessSiNg PhasS. . .uiiiiri it s e s e s an e s e sae s s sae s an s snern e nerneeneeanennes 39
The Rendering Phase.o s e 39
The Lifecycle of Updating Pages. . .c.oiiiiiiii i e it e e e et e 39
The Request ProCesSiNg Phase.icuiiiiii it i i e e et et eaees 39
The Event ProCessing Phase. oot e e e 40
The ReNdering Phase. ... o et et et e e e e e ee e anans 40

LI TS 1] P 40
Component Garbage ColleCtion.o e 41
5. Event Listening and ProCessSing.....iccireiiimimiemismrassransrassssssssssssssssasssanssanssansssnnsnnnnns 42
Add Event Listeners by Markup LangQuUages.cuiiuiiiiiiiie i ee it e st sae e s s e sneseanneanens 42
Add and Remove Event Listeners by Program.......ccciiiiiiiiiiiiii i 42
DL To b=] g <= T =T 0 1] o 1= R 42
Add and Remove Event Listeners Dynamically......oocveiiiiiiiiii i i ne e aea s 43

L T Lo N A o K3 PP 43
Add and Remove Event Listeners to Pages Dynamically.......ccooiiiiiiiiiiiiiiic e 43
(=T A LYo Yo=Y o g IS =To [L= o ol PN 44
Abort the INVOCatioN SEQUENCE.t i e e e e aaaeas 45
Send and Post Events from an Event Listener... ..o 45
0 T M V=T 45
1= I Y= o = 45

ZK: Developer's Guide Page 4 of 211 Potix Corporation

B 1= H (o T = 45

YU 1S] o2=T e I=1 o Uo B 2= =] 1o 1= 45
o] o o @ F o T=T or= [0} o =7 N 46
Example: A Working Thread Generates Labels Asynchronously...........ccoeviiiiiiiiennnnn 47
Another Implementation: No Suspend and RESUMIE......ccvvviiiiiiiiiiiiiiiiii e ieaeas 48
Initialization and Cleanup of Event Processing Thread.......c.ccoviiiiiiiiiiiiiciicic i 49
Initialization Before Processing Each EVent.....ccoiiiiiiiiiii e 49
Cleanup After Processed Each EVeNnt..... ... e 50

6. The ZK User Interface Markup Language.....cccveverimsamsaramsarsnsessasassasansasansassnsassasansasansas 52
PP 52
Elements Must Be Well-formed.oouiiiiiiiii i e e aeas 52
Special Character Must Be ReplaCed.o.eiuiiiii i e e 53
Attribute Values Must Be Specified and QUOTEd.......cciiiiiiiiiiiiiii e 53
L0 0101 0.0T= 53

(01 1= r=Tot o = gl = g Telo o |1 T [53

N F= T == 1= T o< 54
Auto-completion with Schema. ... 55
Conditional Evaluation......ciieiii i i s e e e 55
Tterative EValUuation. ..o e 55
The aCh Variable. ... e e e e a e 56
The forEachStatus Variable......ooi i e e e ane e s 56
How to Use each and forEachStatus Variables in Event Listeners.........ccoooiiiiiviiiiiiniinnnnnns 57

A Solution: CUStOM-attribULES. .. vt e 57

| g] 0] 1ol o @]} =T oL o= R 58
TS o) i g] o] ol o @) =T ot = R 58
Information about Request and EXECULION......iiviiiiiiiii i e 60
Processing INSTrUCTIONS. ...t e 60
LI LTSI o= [L T =Tt o L= 60
The COMPONENE DireCHIVE. ..ttt e e e e s e e nr e a e rneanes 61

B a0 03 A 1.0 T= L o T 0 1 = | oS 62

Bl gL o) Ao = 1T o] o 0 1= | PR 62

BN TS L T 0= o Y= PP 64
The variable-resolVer DireCiVe. ...t e e e eane e raneaneannenes 65
I g o] g ol 1 =Tt o R 66
The link and Meta DireCliVeS. .. cvi it e e e e e 66
ZK A DU S e e 67
I TSI TR AN o] o] U ol PP 67

ZK: Developer's Guide Page 5 of 211 Potix Corporation

B TS oo | o YU 67

The Unless At DULE. .. o e 67
The forEach At DULE. ..o e 67
The forEachBegin AttribULe. .. .o e 67
The fOrEaChENd AltriDULE. ... e e e e e r e naan e rneanes 68

A (G = =12 g 1= | o= PP 68
BN LTST4 = 1=1 . 1= | o PP 68
Multiple Root Elements in @ Page. ..o e 68
Iteration Over Versatile ComMpPONENntS. e e 69

L AL 4T ol 1]l =1 = 0 ¢ U= o | o 69
How to Select a Different Scripting Language.......ccviiiiiiiiiii i e 70

How to Support More Scripting LangQUagES.cvvuiiuiiiiiiiiiiiniis i sesesnaesness 70

The attribute Element. ..o e e 71
The variables @lament. . .o e 71
The custom-attributes elemeEnt.ciii i e e reas 72
Component Sets and XML NameSPaCeS. .. .uuiiiiirtiiititeritiansasransanssarransassraesarsssraeeasssssnnsns 73
1 =T e F= T N =T g U= t] 1= Lol 74
7. ZUML with the XUL Component Set.....ccccviiiiimrmmmn i s s s s s sss s s s s ssnnssnsnns 76
[T 1] T ol @0 g o1 0] =1 o) =3 76
= o = P 76
The pre, hyphen, maxlength and multiline Properties.........ccoviiiiiiiiiiiiiii e 76
Tt 0 P 77
The onClick Event and href Property......o.voe oo e e e e 77

The sendRedirect Method of the org.zkoss.zk.ui.Execution Interface............ccoeviinene. 77
(2= Yo [ToJR=1a o I 2 ¥ Ta [1o I €] oo 18] o 1S PP 78
VISt LAY OUES. . et e 78

1 =TT 79
Locale DepPendent ImMage. . oottt e e e 79

| a T= T =T 0 1=] o S PP 80

N T 81

I ST A= o2 o e 0T o PP 81
T | o 82
] o 0w o |l o] = PP 82

BN TSI 4 TS 4 o 0 1= 2P 82

= FoTnn g b= Lol o o] 0T o YT 83

@0 i =]l = 1 83
(OIF]S o] a] F4=To I @fe] a1 =11 o] = PP 84
0rg.zkoss.zK.Uui.WrongValueEXCePiONuiri i i s en e e e eaeas 84

The oNChange EVeNt. ... s s e e e e aaaas 85

ZK: Developer's Guide Page 6 of 211 Potix Corporation

The oNChanging @VENT.ot et e e e e eeaes 85

(6=] 1] o o -1 o PP 85
The value Property and the onChange Event.......c.ccoiiiiiiiiiiiiiin e 86

LI =T ele) 0] 0= Lot o o 01T o Y PP 86

o 0T =TT =] =] < 86
1) e [o PR 86
.= 86
= 1 1 Lo 86
Paging with List BOXe@S @nd GridsS.couieiiiiii it e e e 87
LA o= 87
LIRS C=E= L o =] o w o] 1= PP 88
LR CIe (e T3=] o] [o g o] =T o oY PP 88
LR CTET 2= | o1 L o o] =T o Y2 P 89
The ONSIZE EVENT. . it e ettt a e et ae e e e aaeeaas 89
The Style Class (SCIASS) .. uiiuiitiiiiitiiti ittt st ar s sarrae s e araasssrsaesansreaanearssneans 89
The CONTENESEY @ PropP eIty ittt e r e e s e rae e s a e e e e aneaneannans 90
1Yol o] =1 0] LA T o T Lo 1P 90

5 To] e = ol PP 90
Overlapped, Popup, Modal and Embedded...........cooiiiiiiiiiiii e 91
=] Y0 7= T [=T 1R 91
(@)Y g F=T'o] o= S P 91
[0 0 15 o 1 91
oY -1 PP 92
Modal WIindows and EVeNt LiSteNersS. . ..uviiiiii i aee e e e e ennennereannans 92
(6] 010 aTeT g T DI T= | [o [94
The 0rg.zkoss.zul.MessageboX Class.uuuiieiiiiiii i et ae e aaeaens 94
The org.zkoss.zul.Fileupload Class......ciiiiiiii i i e 94

BN (ST = o D 1 o o [PP 95
B ST o= Tof L o I d o] o= o 1Y/ PN 96
The widths and heights Properties.o e 97
10 0 o= o= N 97
B ST ele] E=T 0 1T o o] 1= o Y2 PP 98
BN TST0T 1= o T o o 1= o 98

BN TS0 01O o 1= o T V7= o | P 99
L] 03 =10 DS PP 99
T T B Yo T = Lo T PPN 100
RN (=l AYelolo] g'o [ol a TN It=1 o 0 =1)P 100
AL =] g Lol o o] 0 1= Y/ 101
The ClosSable Proparty ... e et 101
Create-on-Select for Tab Panels. .. .coiiiiiiiiiii i e e aea e 101

ZK: Developer's Guide Page 7 of 211 Potix Corporation

1Yo o] 1 =1] 1< €] o o 1R PP 103

Y V4=] o] LI o] 18] o1 o 170 PR 103
The ONCOISIZE EVENE. .t et e e rnes 104
Grids WIth Paging...ccooiiii i e 104
The PageSize Prop ety . ..o e e as 105

B 8 L o= o L = 1 2 0 01 0 2 105

LI (ST o= | e T = o] o= 1Y 78 P 106

The onPaging Event and Method.......c.oiiiiiiiiii i e i e e 107
1o o1 L P 107
The SOrtDIreCtiON PrOPertY ... ettt e e e e ne e aeanans 107

BN TS0 1S ol =T o | PP 108

B I [STTe] o =) o To T PP 108

LY I | - 108

1Y o L=To =] B o o] o 1= o 1= PP 109

I AT o= | g Fo ad 01 PP 109

[\ To] = =1V o 1 L @ ¥ 0T 1= o) ot 110
SEPArators AN SPACES.ii ittt 110
(o 18T I o o)d =T 111
The contentStyle Property and Scrollable GroupboX.......ccvvviiiiiiii e 111

10 o1 0= P 112
1= o U o = | TP 112
(STl U= I\ 1T o 1U I o] o = Lo 113
Use Menu Items @S CheCK BOXES. .. uuiiriiieiiiiii it rieraee s ar s s ransane e sansane e snneaneannss 114
LI L=IR= 18 Lo Y 1o o TN e T =T o Y PP 114
The onOpen Event and Load-0on-Demand........ccciiiiiiiiiiii i i riee e eaeas 114
MOFE MENU FEAtUNES. ..ttt et ettt e et e s s e et e ran e rane s raneanns 114
(00 1 = ol =T 1= 114
Customizable Tooltip and POPUP MENUS.......viiiiiriiiiieiie i raneane e ransaneaeanes 115
The onOpen Event and Load-0n-Demand........ccoiiiiiiiiiiiiii i snesaae e 116
I3 ol 70)< 1= PP 117
L L R @] 18T g o] T I3 ol = Yo)= 117
(7o) 18] 2] [=T= [L= = PP 118
(070] 18 g 0] T =0 To Y L= or = PPN 118

[T] o I 10 T 1LY o T £ P 119

N TUT 1o (IS = 1<t T] o FS P 119
Yol go] 1=] o] L I Yo =T PP 119

B I (ST o)22 2 o] o 1= o Y PR 120
SiZable LISt HEAG S, .ottt e e e e 120

ZK: Developer's Guide Page 8 of 211 Potix Corporation

List BOX@S WIth Paging.......oviiiiiii e et e e 120

1 o o 120
The sortAscending and sortDescending Properties......c.ocvvviiiiiiiiiiiiiiii e 121

R (STETe] g u BT =Yoo o] I =d o] o= 1280 PP 121

L AL 1o V=T o PP 122

B I8 (=TT] o =1 ol o T 122

1] =Tl = | I 0] o= o of 1= TN 122
The cheCkmark Property.....o.cieiii i e e e e e e aaeeaes 122

B A LD d 0 1= Y 123

The maxlength Property. ... e 124

I I - | - P 124
1o ol IV I | = 125
List BoXES CoNtain BULLONS. ..ttt e e e e e s e e s e s e e e e e neeenes 125
QLIS 0T 1 o] =P 126
The open Property and the onOpen Event... ..o e 128
The onOpen Event and Load-0on-Demand........cceiiiiiiiiiiiii i i iee e eneas 128
LT LT o] LIS =] 1= Tt o T o PP 128

1] o= Toi = | I 0] o= o o =T 128

B I TSI e)T o o 1= o Y2 128

The CheCKmMaArK PrOPer Y .. v e r e s e e e s s r e re e an e rnernnenneenennes 128

B LI A 1 L5 G e 1= o Y P 129

The maxlength Property....cov i e e e s e e enes 129
Y4z] o] L= T o] 1811 o1 o I P 129
Create-on-0pen for Tree CoNtrOlS. .o i e e s e aneaneanns 129
(070] a1 0Te] s Y0) =TT PP 130
LI L=IR= 181 oe Yo Lo o T o o =T o Y PP 130

L AL [Tl g1 o a0 o I = o] oY= ot Y 130
The onOpen Event and Load-on-Demand........cciiiiiiiiiiiiiii i e e 131
The onNChanging EVeNt.o ettt et e n e aeeanens 131

5 1= T | 00 0t == 132
The closeDropdown Method. e eas 133

I (ST 1V Yo Lo o TN = o] o 1= o Y PP 133
The onOpen Event and Load-0on-Demand........cceiiriiiiiiiiinii i raesnse e sanesnerneenneeness 133
The onChanging EVent.. ... e e e e e 133
L1 = o 134
I I - | > P 134
Drill Down (The oNCICK EVENT) ... et e e e e e e eeaes 134
=Y T o LU= L A o =T 135

[=T = o T D o] o S PP 136

ZK: Developer's Guide Page 9 of 211 Potix Corporation

The draggable and droppable Properties.....ccuviviiiiiii i e e aaeas 136

QLI TSR0] o] o =AY Z= o | 136
Multiple Types of Draggable ComponentS. .. ccvviriiiiiiiii i e eees 138

[I T LAV = o o o] o 0 o 7o 1= N o= 138
The Style ComMPONENE. .. e e r e s e e e s s e e e n e rneanes 138

R = gLl a 0] B @0e] o 0T o o] Y= o | o 139
Mix the HTML and XUL CoOmMPONENTS. . ittt st i i r e vt r e s ae e s aae e rareaaaaeas 139

Ll a TR] g Lo 18 Te (=T @0 5 oY 0o] =] o | o R 140
INCIUAING ZUML PageS. .. uc ettt ettt et e et e e e e e e e e e e eeeneananens 140

The iframe CoOmMPONENT. ...ttt r e s e e e s e e e e e et e reaaaesneenaaneaneans 140
Work with HTML FORM and Java Servlets. ..o i it vee e 142
BN TSI A= L TSI o] 0 1= 2P 142
Components that Support the name Property....ccovviiiiiii i e e 143
ol UL gl g =T 7=l T PP 143

(O T o Y To L= A o o o] 1= 144
Referance t0 @ CoOmMPONENE. . it e et e e et r e aas 144
An onfocus and onblur EXample. ... 145

(@0 =T ol of [0 o T 2N B] =T3P 145

The onshow and onhide ACHIONS. ... viiii i e e r s e e e anernens 146
An Example to Change How @ WINdOW APPEarS.couieiuiiiiie i ieieeaeeeaeeneaeanns 146

CSA JavaSCript Uil vttt s e e e e e e e e e 146
The aCtion OB el . .. e e e 146

I (=TTl = T O o) =T TP 146
Y= o 1 148
Lo EY I Y 7T o =P 148
(G V210 0] (ST /=T 1o PP 149

B g Lo g LSS V2 ad] 01 Y75 150

g T =T o 150
LisSt @Nd Tree EVENES. ..t e e 151
Slider and SCroll EVENES. ... e e 152

(O g1 ol Y =T o | = 152
The Event Flow of radio and radiogroUp........ooeieieiiiii i e aeeaens 153

8. ZUML with the XHTML Component Set.......cccvcvmmmmimmimsi s s sassasssnssn s ssnssnssnssnnsnnsuns 154
I8 TS0 = 154
A XHTML Page Is A Valid ZUML Page......couiiiiiii i et e e e e e e 154
Server-Centric Interactivity. ..o e 155
Servlets WOrK AS UsSUal. . ..ot rae s s e e s ans e e s s nsresanssne s e e nneaneannss 156
LA LCT B KL =] a 1ol PP 156

ZK: Developer's Guide Page 10 of 211 Potix Corporation

UUID IS I .. it a s e ae e 156

1Yo [= =T o= P 156

D =T [N < £ 1T R 157
L= 1Y I T =T o] o A= 157

NN T T 1 o U IS U1 0] o o o 157
The DOM Tree at the BroWSer. ...t e e e e e e anes 157
The TABLE @Nd TBODY TagS. ittt tattteitetate st aae et a e sat e st aie e aaneearaeaanes 157
= o 1 158
Integrate with JSF, JSP and Others. ..o e 158
Work with EXistent Servlets. ..o e 158
=] Tl)V Tl 0] o o PP 159
ENrich @ STatic HTML Page. . civiiiiiiii it v s e s e s e e e s s e s e e ane s e e e e nnerneas 159
Enrich a Dynamically Generated Page........ccooiiiiiiiiii i 159

D LI o Tl o I PPN 160

9. Macro COMPONENTS..uuuiueeiunriesrsanrsas s s s sssssssasssasssasssassssanssssssssnssanssanssanssannsnnnsnnnnss 161
Three Steps to Use Macro COmMPONENTS.iuiiiiiiiie i s aes e aarsaneaaeanss 161
Step 1. The Implementation.. ..o e e 161

L =T AN I (=T I Tl =Y o= | o o 162

L@ 1Tl o 0] o 1= o o =T 162

L= o I TR I o 1= U= 162
PaSS PrOPeIIES. ittt 162

= 1o 1 of 18 e = oS 163

| [T g T =T o T PP 163
F N T = 1 0] o L= P 164
[T [U 1 =T gl 7 =Tl o 1= PP 164
Macro Components and The ID SPace.....iuiiiiiiriiri i i i rareareaeaea 164
Access Child Components From the Outside.....cccoviiiiiiiiii i e 165
Access Variables Defined in the ANCEStOrS.....iviiiii i i e 166
Change macro-uri At the RUNEIME. ... e 166
Provide Additional Methods.cuviiii i i e e e e e e e eraneans 166
Provide Additional Methods in Java....c.ccviiiiii i e 167
Provide Additional Methods in ZSCript.....ciiiiii i e 167
Override the Implementation Class When Instantiation...........ccoiviiiiiiiiiic i 168
Create a Macro Component Manually.....cccviiiiiiiiii i i 169

10. Advanced Features.....iccviiimrimrieriesmessassassanssassassassassassanssnssnssnssnnsnnsansansansnnsnnssnnsnnnans 170
o 1= L) Y =T =P 170
Identify oM PONENES. it e e 170

ZK: Developer's Guide Page 11 of 211 Potix Corporation

15 o 1] T P 171
Browser's Information and ControlS. . ..iiiiiiiii i e 172
The ONCHENTINfO EVENT. ..ot ettt aea e 172
The 0rg.zkoss. Ui Uil ClENtS Class.couieii i e e e e enenes 173
Prevent User From CloSiNg @ WiNAOW.uiiiiiiiiii i it essee e e e nae e aaes 173
Browser's HiStory Management. oottt et e e e e eaa 174
Add the Appropriate States to Browser's HiStory......ccvviiiiiiiiiiic e 174
Listen to the onBookmarkChanged Event and Manipulate the Desktop Accordingly........... 175

FAN Y [o] L= == o oY o] U= 176
(0o a1 70 T=T | B @1 Lo | o [P 176
Component SerialiZationo e 177
SerialiZable SESSIONS. . ittt 178
Inter-Page CommUNICAtION. ... s e e e e e 179
POSt @and SeNd EVENES. . it e 179

A a0 == 179
Inter-Web-Application CommuUNiCatioN.ciiiiii i e e eeeaas 179
Web Resources from Classpath....c.uic i e e e 180

Y g o) o= 0] o = 180
Annotations of Component Declarations.vviiiii i i 180
Annotations of Property Declarations.ciiiiiiiiiiiiii i 181
Annotate Components Created Manually........ccoiiiiiiiiii e 181

N LAV < o o o o= [0 o 1= 181
ol] = =P 182
Implement the org.zkoss.zk.ui.Richlet interface........c.oooeiiiii i 182
(@ [= I Tl] 1] ol oY= 1 PP 183
Configure web.xml and zK. XMl ..o o s 183
Session TIMeoUt ManagemEnT. ... e e 184
[o] il 1= T 1 o 184
Error Handling When Loading Pages........cciiuiiiiiiii i e e e 185
Error Handing When Updating Pages.ccviiiiiiii i i i it it e ree e 186
11. Internationalization.....ccccciiiiiriori i ire s s s i s r s ra s s s rraE R rrraranrnnnnn R nnn 188
[Yol | = PR 188
The px_preferred_locale Session Attribute......ccviiiiiiiii 188

QLI (ST oY=] L= o o 1Y T =T 188
LI 174 o o =T 189

ZK: Developer's Guide Page 12 of 211 Potix Corporation

The px_preferred_time_zone Session Attribute......c.ocooiiiiiiii i 189

The TimME ZONE PrOVIder. ..ttt e e e e e et e et e e e et et ae e ran e e aneaans 189

= 01 £ PP 190
Locale-Dependent Files.o e 190
Browser and Locale-Dependent URL........ccouoiiiiiiiii et e e e e nee e e 190
Locating Browser and Locale Dependent RESOUrces in Java.....c.ooevviiiiiiiiiiiii i e enaen 192
=T ST= 10 1T 192
Chinese Characters and Larger FONES. . ..o e e e e 192
12. Database Connectivity....cciiiciiiiiiiiic i i rr s sra s s s s s ra s s aa s an e nrannnn R nnnnu 194
ZK Is Presentation-Tier Only e et et et e e e e e e e e eeanes 194
Simplest Way to Use JDBC (but not recommended).......ccoiiiiiiiiiiiiiiiiiic e 194
Use with ConNection POOIING.eii i et e e e e eenenes 195
Connect and Close @ CONNECHION.iiitii it e e e e s e seraee e anens 196
Configure ConnectioN POOIINGttt e e e e e e e e e e ananens 197
TOMCAE 5.5 4 MY S Q.. ittt e 197
JBOSS F MY S Q. ittt 198
JBOSS + POSEGIES Q. ittt i i i e 199

ZK Features Applicable to Database ACCESS......cuiiiiiiiiiii i e 199
The org.zkoss.zk.ui.event.EventThreadCleanup Interface..........ccoooiiiiiiiiiii i, 199
Access Database iN EL EXPreSSiONS. . ottt i i e e et 200
Read all and Copy t0 @ LINKedList. .. oiuiiiiiii i e e ees 200
Implement the org.zkoss.zk.ui.util.Initiator Interface..........ccooiiiiiiii s 201
Transaction and org.zkoss.zk.util.Initiator........cooiiii i 201
J2EE Transaction and Initiator.....cooviiiiii i e e 202

Web Containers and Initiator. . ..cooi i s e 202

13. Portal INntegration.....cuiciicrirmnmemse s rre s ra s s ssssasrasrassassassanssnssnssnnsansansansnnsnnnnns 204
(@{o] o) T 8T o= o] [P PP 204
= R T o oY 1= 1 | P PP 204

L R L AT = o T g | P 204

LI IO £ =T =P 205
The zk_page and zk_richlet Parameter and Attribute..........ccvviiiiiiiici e 205
€= Y] 1= 205
14, BEYONA ZK...uuiumiumrumrunnnenresmasmsssssssssssssssnsssnssssanssnssnnsnnsnns 207
[0 T [1T o 207
How to Configure Log Levels With ZK.o e 207

ZK: Developer's Guide Page 13 of 211 Potix Corporation

Content Of 13-10G.C0NT. ... e 208

F A Lo T I T = 208
LoCation Of 13-10G.C0ONT ... i e 208
(D=1 o L= | 1o Yo =P 209
31 P 209

ot 51 = 210
5 210
DN PP 211

ZK: Developer's Guide Page 14 of 211 Potix Corporation

1. Introduction

Welcome to ZK, the simplest way to make Web applications rich.

The Developer's Guide describes the concepts and features of ZK. For installation, refer to the
Quick Start Guide. For fully description of properties and methods of components, refer to the
Developer's Reference.

The chapter describes the historical background about Web programming, AJAX technologies and
the ZK project. You might skip this chapter if you prefer to get familiar with the ZK features
directly.

Traditional Web Applications

Aiming at exchanging documents simply and effectively, Web technologies, HTTP and HTML, is
originated from the page-based and stateless-communication model. In this model, a page is self-
contained and the minimal unit to communicate between clients and servers.

As the Web has emerged as the default platform for Bmws}f:gel Server
application development, this model faces a substantial T
challenge: the inability to \visually represent the
complexities in today's applications. For example, to give a et
customer a quotation, you might have to open another Page2 Servlet 1
page to search his trading records, another page for the L
recent prices, and another page for current stocking. Users
are forced to leave the page he is working on, and navigate
among several pages. It is easy to get lost and confused,
and the result is unhappy customers, lost sales and low
productivities.

Submit

A HTML page

Submit

Servlet 2

A HTML page

The challenge to develop a modern application upon this :
page-based model is also substantial. In this model,

applications running at the server have to take care

everything from parsing the request, rendering the response, routing processes that link users
from one page to another, and handling versatile errors made by users. Tens of frameworks, such
as Struct, Tapestry and JSF, are then emerged to simplify this development process. Due to the
huge gap between the page-based model and the modern applications, learning and using these
frameworks is never a pleasant process, not to mention intuition or simplicity.

Ad-hoc AJAX Applications

Over a decade of evolution, Web applications evolved from static HTML pages, to Dynamic HTML

ZK: Developer's Guide Page 15 of 211 Potix Corporation

pages, to applets and Flash, and, finally, to AJAX!
technologies (Asynchronous JavaScript and XML). Illustrated "% o S
by Google Maps and Suggest, AJAX breaths new life into e

Web applications by delivering the same level of

interactivity and responsiveness as desktop applications.
Unlike applets or Flash, AJAX is based the standard browser
and JavaScript and no proprietary plugin is required.

== e AJAX request

Servlet 1-1

Update a potion of the page
AX request

AJAX is a kind of new generation DHTML. Like DHTML, it

Servlet 1-2

heavily relies on JavaScript to listen events triggered by

user's activity, and then manipulate visual representation of — " | T c 4 potion of the page
a page (aka. DOM) in the browser dynamically. Moreover, it e " bmit

takes a step further by enabling the communication with the Serviet 1
server asynchronously without leaving or rendering the

whole page again. It breaks the page-based model by A HTML page

introducing light-weight communication between clients and

servers. With proper design, AJAX could bring rich

components common to desktop applications to life in Web applications, and all of their content
could be dynamically updated under the control of applications.

When providing the interactivity that users demand, AJAX adds more complexities and skill
prerequisites to the already costly development of Web applications. Developers have to
manipulate DOM in the browser and communicate with the server in incompatible and even buggy
JavaScript API. For better interactivity, developers have to replicate subset of application data and
business logic to the browser. It then increases the maintenance cost and the challenge to
synchronized data in between.

The bottom line is that ad hoc AJAX applications is no different from traditional Web applications
regarding the way to process requests. Developers still have to fulfill the gap caused by the page-
based and stateless model.

ZK: What It Is

ZK is an event-driven, component-based framework to enable rich user interfaces for Web
applications. ZK includes an AJAX-based event-driven engine, a rich set of XUL and XHTML
components, and a markup language called ZUML (ZK User Interface Markup Language).

With ZK, you represent your application in feature-rich XUL and XHTML components, and
manipulate them upon events triggered by user's activity, as you did for years in desktop
applications. Unlike most of other frameworks, AJAX is a behind-the-scene technology. The
synchronization of the content of components and the pipelining of events are done automatically
by the ZK engine.

Your users get the same engaged interactivity and responsiveness as a desktop application, while

1 AJAX is coined by Jesse James Garrett in Ajax: A New Approach to Web Applications.

ZK: Developer's Guide Page 16 of 211 Potix Corporation

your development remains the same simplicity as that of desktop applications.

In addition to a simple model and rich components, ZK also supports a markup languages, called
ZUML. ZUML, like XHTML, enables developers to design user interfaces without programming.
With XML namespaces, ZUML seamlessly integrates different set of tags? into the same page.
Currently, ZUML supports two set of tags, XUL and HTML.

For fast prototyping and customization, ZUML allows developers to embed EL expressions, and
scripting codes in your favorite languages, including but not limited to Java?®, JavaScript*, Ruby®
and Groovy®. Developers could choose not to embed any scripting codes at all, if they prefer a
more rigid discipline. Unlike JavaScript embedded in HTML, ZK executes all embedded the
scripting codes in the server.

It is interesting to note what we said everything running at the server is from the viewpoint of
application developers. For component developers, they have to balance the interactivity and
simplicity by deciding what tasks being done at the browser, what at the server.

ZK: What It Is Not

ZK assumed nothing about persistence or inter-server communication. ZK is designed to be as
thin as possible. It is only aimed at the presentation tier. It does not require or suggest any other
back-end technologies. All your favorite middlewares work as they used to, such as JDBC,
Hibernate, Java Mail, EIB or JMS.

ZK doesn't provide a tunnel, RMI or other API for developers to communicate between clients and
servers, because all codes are running at the server at the same JVM.

ZK doesn't enforce developers to use MVC or other design patterns. Whether to use them is the
developer's choice.

ZK is not a framework aiming to bring XUL to Web applications. It is aimed to bring the desktop
programming model to Web applications. Currently, it supports XUL and XHTML. In future, it
might support XAML, XQuery and others.

ZK embedded AJAX in the current implementation. It doesn't end in where AJAX ends. With
upcoming ZK for Mobile, your applications could reach any devices that support J2ME, such as
PDA, mobiles and game consoles. Moreover, you don't need to modify your application at all’.

A tag is an XML element. When a ZUML page is interpreted, a corresponding component is created.
The Java interpreter is based on BeanShell (http://www.beanshell.org).

The JavaScript interpreter is based on Rhino (http://www.mozilla.org/rhino).

The Ruby interpreter is based on JRuby (http://jruby.codehaus.org/).

The Groovy interpreter is based on Groovy (http://groovy.codehaus.org/).

For devices with small screen, you usually have to adjust the presentation pages.

NOouu h~»WwWN

ZK: Developer's Guide Page 17 of 211 Potix Corporation

ZK: Limitations

ZK is not for applications that run most of tasks at the clients, such as 3D action games.

Unless you write a special component, ZK is not for applications that want to leverage the
computing power at the clients.

ZK: Developer's Guide Page 18 of 211 Potix Corporation

2. Getting Started

This chapter describes how to write your first ZUML page. It is suggested to read at least this
chapter, if you are in hurry.

This chapter uses XUL to illustrate ZK features, but it is usually applicable to other markup
languages that ZK supports.

Hello World!

After ZK is installed into your favorite Web server®, writing applications is straight forward. Just
create a file, say hello.zul, as follows® under a proper directory.

<window title="Hello" border="normal">
Hello World!
</window>

Then, browse to the right URL, say http://localhost/myapp/hello.zul, and you got it.

Hello World!

In a ZUML page, a XML element describes what component to create. In this example, it is a
window (org.zkoss.zul.Window). The XML attributes are used to assign values to properties of
the window component. In this example, it creates a window with a title and border, which is done
by setting the title and border properties to "Hello" and "normal", respectively.

The text enclosed in the XML elements is also interpreted as a special component called label
(org.zkoss.zul.Label). Thus, the above example is equivalent to the following.

<window title="Hello" border="normal">
<label value="Hello World!"/>
</window>

Interactivity

Let us put some interactivity into it.

<window title="Hello" border="normal">
<button label="Say Hello"™ onClick="alert ("Hello World!s")"/>
</window>

Then, when you click the button, you see as follows.

8 Refer to the Quick Start Guide.
9 The other way to try examples depicted here is to use the live demo to run them.

ZK: Developer's Guide Page 19 of 211 Potix Corporation

http://localhost/myapp/hello.zul

& Hello World!

The onClick attribute is a special attribute used to add an event listener to the component. The
attribute value could be any legal Java codes. Notice that we use squot; to denote the double
quot (") to make it a legal XML document. If you are not familiar with XML, you might take a look
at the XML section in the ZK User Interface Markup Language chapter.

The alert function is a global function to display a message dialog box. It is a shortcut to one of
the show methods of the org.zkoss.zul.Messagebox class.

|<button label="Say Hello" onClick="Messagebox.show ("Hello World!s")"/> |
Notes:

« The scripts embedded in ZUML pages can be written in different languages, including but

not limited to Java, JavaScript, Ruby and Groovy. Moreover, they are running at the
server.

« ZK uses BeanShell to interpret Java at run time, so you could declare global functions,
such as alert, for it. Similarly, almost all scripting language provides a simple way to
define global functions, and, sometimes, classes.

- All classes in the java.lang, java.util, org.zkoss.zk.ui, org.zkoss.zk.ui.event and
org.zkoss.zul package are imported before evaluating the scripting codes embedded in
ZUML pages.

The zscript Element

The zscript element is a special element to define the scripting codes that will be evaluated

when a ZUML page is rendered. Typical use includes initialization and declaring global variables
and methods.

Note: You cannot use EL expressions in zscript codes.

For example, the following example displays a different message each time the button is pressed.

<window title="Hello" border="normal">
<button label="Say Hello" onClick="sayHello()"/>

<zscript>
int count = 0;
void sayHello() { //declare a global function

alert ("Hello World! "+ ++count);
}

</zscript>

ZK: Developer's Guide Page 20 of 211 Potix Corporation

</window>

Note: zscript is evaluated only once when the page is loaded. It is usually used to
define methods and initial variables.

The Scripting Language

By default, the scripting language is assumed to be Java. However, you can select different

language by specifying the language attribute as follows. The language attribute is case
insensitive.

<zscript language="javascript">

alert ('Say Hi in JavaScript');

new Label ("Hi, JavaScript!").setParent (win);
</zscript>

To specify the scripting language for an event handler, you can prefix with, say,
javascript: as follows. Notice: don't put whitespace before or after the language name.

|<button onClick="javascript: do_something in js();"/> |

You may have the script codes writing in different scripting languages in the same page.

The Scripting Codes in a Separate File

To separate codes and views, developers could put the scripting codes in a separated file,
say sayHello.zs, and then use the src attribute to reference it.

<window title="Hello" border="normal">
<button label="Say Hello" onClick="sayHello()"/>
<zscript src="sayHello.zs"/>

</window>

which assumes the content of sayHello.zs is as follows.

int count = 0;
void sayHello() { //declare a global function
alert ("Hello World! "+ ++count);

The attribute Element

The attribute element is a special element to define a XML attribute of the enclosing element.

With proper use, it makes the page more readable. The following is equivalent to hello.zul
described above.

<button label="Say Hello">

<attribute name="onClick">alert ("Hello World!");</attribute>
</button>

ZK: Developer's Guide Page 21 of 211 Potix Corporation

You can control whether to omit the leading and trailing whitespaces of the attribute value by use
of the trim attribute as follows. By default, no trim at all.

<button>
<attribute label="value" trim="true">
The leading and trailing whitespaces will be omitted.
</attribute>
</button>

The EL Expressions

Like JSP, you could use EL expressions in any part of ZUML pages, except the names of attributes,
elements and processing instructions.

EL expressions use the syntax ${expr}. For example,

<element attrl="${bean.property}”.../>
S{map[entry]}
<another-element>${3+counter} is ${empty map}</another-element>

Tip: empty is an operator used to test whether a map, a collection, an array or a string is
null or empty.

Tip: map[entry] is @ way to access an element of a map. In other words, it is the same

as map.get (entry) in Java.

When an EL expression is used as an attribute value, it could return any kind of objects as long as
the component accepts it. For example, the following expression will be evaluated to a Boolean
object.

|<window if="${some > 10}"> |

Tip: The + operator in EL is arithmetic. It doesn't handle string catenations. If you want
to catenate strings, simple use "S{exprl} is added with ${expr2}".

Standard implicit objects, such as param and requestScope, and ZK implicit objects, such as self
and page, are supported to simplify the use.

|<textbox value="${param.who} does ${param.what}"/>

To import EL functions from TLD files, you could use a processing instruction called taglib as
follows.

|<?taglib uri="/WEB-INF/tld/web/core.tld" prefix="p" 2> |

The Developer's Reference provides more details on EL expressions. Or, you might refer to JSP
2.0 tutorials or guides for more information about EL expressions.

ZK: Developer's Guide Page 22 of 211 Potix Corporation

The id Attribute

To access a component in Java codes and EL expressions, you could assign an identifier to it by
use of the id attribute. In the following example, we set an identifier to a label such that we could
manipulate its value when one of the buttons is pressed.

<window title="Vote" border="normal">
Do you like ZK? <label id="label"/>
<separator/>
<button label="Yes" onClick="label.value = self.label"/>
<button label="No" onClick="label.value = self.label"/>
</window>

After pressing the Yes button, you will see the following.

Do you like ZK? Yes

The following is any example for referencing a component in an EL expression.

<textbox id="source" value="ABC"/>
<label value="${source.value}"/>

The if and unless Attributes

The if and unless attributes are used to control whether to create a component. In the following
examples, both labels are created only if the request has a parameter called vote.

<label value="Vote 1" if="${param.vote}"/>
<label value="Vote 2" unless="${!param.vote}"/>

If both attributes are specified, the component won't be created unless they are both evaluated to
true.

The forEach Attribute

The forEach attribute is used to control how many components shall be created. If you specify a
collection of objects to this attribute, ZK Loader will create a component for each item of the
specified collection. For example, in the following ZUML page, the listitem element will
evaluated three times (for "Monday", "Tuesday" and "Wednesday") and then generate three list
items.

<zscript>contacts = new String[] {"Monday", "Tuesday", "Wednesday"};</zscript>
<listbox width="100px">

ZK: Developer's Guide Page 23 of 211 Potix Corporation

<listitem label="S${each}" forEach="${contacts}"/> Monday

</listbox> Tuesday
Wednesday

When evaluating the element with the forkach attribute, the each variable is assigned one-by-

one with objects from the collection, i.e., contacts in the previous example. Thus, the above
ZUML page is the same as follows.

<listbox>
<listitem label="Monday"/>
<listitem label="Tuesday"/>
<listitem label="Wednesday"/>
</listbox>

In additions to forEach, you can control the iteration with forEachBegin and forEachEnd. Refer
to the ZK Attributes section in the ZK User Interface Markup Language chapter for details.

The use Attribute

Embedding codes improperly in pages might cause maintenance headache. There are two ways to
separate codes from views.

First, you could listen to events you care, and then invoke the proper methods accordingly. For
example, you could invoke your methods to initialize, process and cancel upon the onCreate??,
onOK'' and onCancel® events.

<window id="main" onCreate="MyClass.init (main)"

onOK="MyClass.process (main)" onCancel="MyClass.cancel (main)"/>

In addition, you must have a Java class called MyClass shown as follows.

import org.zkoss.zul.Window;

public class MyClass {
public static void init (Window main) { //does initialization
}
public static void save (Window main) { //saves the result
}
public static void cancel (Window main) { //cancel any changes

}

}

Second, you could use the use attribute to specify a class to replace the default component class.

|<window use="MyWindow" /> |

Then, you must have a Java class called MyWindow as follows.

10 The onCreate event is sent when a window defined in a ZUML page is created.
11 The onOK event is sent when user pressed the ENTER key.
12 The onCancel event is sent when user pressed the ESC key.

ZK: Developer's Guide Page 24 of 211 Potix Corporation

import org.zkoss.zul.Window;

public class MyWindow extends Window {
public void onCreate() { //does initialization
}
public void onOK () { //save the result
}
public void onCancel () { //cancel any changes

}

}
These two approaches have different advantages. They both act as the controller in the MVC
paradigm. The choice is yours.

Implement Java Classes in zscript

Thanks to the power of BeanShell*3, the implementation of Java classes can be done in
zscript as follows.

<zscript>
public class MyWindow extends Window {
}

</zscript>

<window use="MyWindow"/>

Tip: Many scripting languages, e.g., JRuby, also allow developers to define classes that
are accessible by JVM. Please consult the corresponding manuals for details.

To separate codes from the view, you can put all zscript codes in a separated file, say
mywnd.zs, and then,

<zscript src="/zs/mywnd.zs"/>
<window use="MyWindow"/>

Tip: You can use the init directive to specify a zscript file, too. The difference is the
init directive is evaluated before any component is created (in the Page Initial phase).
For more information, refer to the init Directive section in the ZK User Interface
Markup Language chapter.

Create Components Manually

In addition to describe what components to create in ZUML pages, developers could create them
manually. All component classes are concrete. You create them directly'* with their constructors.

<window id="main">
<button label="Add Item">

13 http://www.beanshell.org
14 To make things simpler, the factory design pattern is not used.

ZK: Developer's Guide Page 25 of 211 Potix Corporation

<attribute name="onClick">
new Label ("Added at "+new Date()) .setParent (main) ;
new Separator () .setParent (main);
</attribute>
</button>
<separator bar="true"/>
</window>

When a component is created manually, it won't be added to any page automatically. In other
words, it doesn't appear at user's browser. To add it to a page, you could invoke the setParent,
appendChild or insertBefore method to assign a parent to it, and it becomes a part of a page if
the parent is a part of a page.

There is no destroy or close method for components'®>. A component is removed from the browser
as soon as it is detached from the page. It is shown as soon as it is attached to the page.

<window id="main">
<zscript>Component detached = null;</zscript>
<button id="btn" label="Detach">
<attribute name="onClick">
if (detached != null) {
detached.setParent (main) ;
detached = null;

btn.label = "Detach";
} else {
(detached = target) .setParent (null);
btn.label = "Attach";
}
</attribute>
</button>

<separator bar="true"/>
<label id="target" value="You see this if it is attached."/>

</window>

In the above example, you could use the setvisible method to have a similar effect. However,
setVisible (false) doesn't remove the component from the browser. It just makes a component
(and all its children) invisible.

After a component is detached from a page, the memory it occupies is release by JVM's garbage
collector if the application has no reference to it.

Developing ZK Applications without ZUML

For developers who preferred not to use ZUML at all, they can use the so-called richlet to
create all components manually.

|import org.zkoss.zul.*;

15 The concept is similar to W3C DOM. On the other hand, Windows API required developers to manage the
lifecycle.

ZK: Developer's Guide Page 26 of 211 Potix Corporation

public class TestRichlet extends org.zkoss.zk.ui.GenericRichlet {
public void service (Page page) {
page.setTitle ("Richlet Test");

final Window w = new Window ("Richlet Test", "normal", false);
new Label ("Hello World!") .setParent (w);

final Label 1 = new Label();

l.setParent (w) ;

/...

w.setPage (page) ;

Refer to the Richlets section in the Advanced Features chapter.

Define New Components for a Particular Page

As illustrated, it is simple to assign properties to a component by use of XML attributes.

|<button label="0K" style="border:1lpx solid blue"/>

ZK provides a powerful yet simple way to let developers define new components for a particular

pages. It is useful if most components of the same type share a set of properties.

First, you use the component directive to define a new component.

<bluebutton/>
<bluebutton label="Cancel"/>

is equivalent to

<?component name="bluebutton" extends="button" style="border:1lpx solid blue" label="OK"?>

<bluebutton style="border:1px solid blue" label="OK"/>
<bluebutton style="border:lpx solid blue" label="Cancel"/>

Moreover, you can override the definition of button altogether as follows. Of course, it won't affect

any other pages.

<?component name="button" extends="button" style="border:lpx solid blue" label="OK"?>

<button/>
<button label="Cancel"/>

For more information, refer to the component Directive section in the ZK User Interface

Markup Language chapter.

ZK: Developer's Guide Page 27 of 211

Potix Corporation

3. The Basics

This chapter describes the basics of ZK. It uses XUL to illustrate ZK features, but it is usually
applicable to other markup languages that ZK supports.

Architecture Overview

ZK includes an AJAX-based mechanism to automate interactivity, a rich set of XUL-based
components to enrich usability, and a markup language to simplify development.

The AJAX-based mechanism consists of three parts as depicted below: ZK loader, ZK AU Engine
and ZK Client Engine.

Server

Application

ZK Pages II
zul, zhtml.

An URL Request

» | ZK Loader
Load Pages

AHTML
bage LCreate
Noti
A
Browser K Access Codes
C nents
Nofify
TUpdate
ZK Requests
ZK Client >
ien .
Engine || _ ZK AU Engine
ZK Responses

Based on the user's request, the ZK Loader loads a ZK page, interprets it, and renders the result
into HTML pages in response to URL requests. A ZK page is written in a markup language called
ZUML. ZUML, like HTML, is used to describe what components to create and how to represent
them visually. These components, once created, remain available until the session is timeout.

The ZK AU Engine and the ZK Client Engine then work together as pitcher and catcher. They
deliver events happening in the browser to the application running at the server, and update the
DOM tree at the browser based on how components are manipulated by the application. This is so-
called event-driven programming model.

16 AU stands for Asynchronous Update.

ZK: Developer's Guide Page 28 of 211 Potix Corporation

The Execution Flow

1. When a user types an URL or clicks an hyperlink at the browser, a request is sent to the
Web server. ZK loader is then invoked to serve this request, if the URL matches which
ZK is configured for'’.

2. ZK loader loads the specified page and interprets it to create proper components
accordingly.

3. After interpreting the whole page, ZK loader renders the result into a HTML page. The
HTML page is then sent back to the browser accompanied with ZK Client Engine’®.

4. ZK Client engine sits at the browser to detect any event triggered by user's activity such
as moving mouse or changing a value. Once detected, it notifies ZK AU Engine by
sending a ZK request®®.

5. Upon receiving ZK requests from Client Engine, AU Engine updates the content of
corresponding component, if necessary. And then, AU Engine notifies the application by
invoking relevant event handlers, if any.

6. If the application chooses to change content of components, add or move components,
AU Engine send the new content of altered components to Client Engine by use of ZK
responses.

7. These ZK responses are actually commands to instruct Client Engine how to update the
DOM tree accordingly.

Components, Pages and Desktops

Components

A component is an UI object, such as a label, a button and a tree. It defines the visual
representation and behaviors of a particular user interface. By manipulating them,
developers control how to represent an application visually in the client.

A component must implement the org.zkoss.zk.ui.Component interface.

Pages

A page (org.zkoss.zk.ui.Page) is a collection of components. A page confines components
belonging to it, such that they will be displayed in a certain portion of the browser. A page is
automatically created when ZK loader interprets a ZUML page.

17 Refer to Appendix A in the Developer's Reference.

18 ZK Client Engine is written in JavaScript. Browsers cache ZK Client engine, so the engine is usually sent
only once at the first visit.

19 ZK requests are special AJAX requests. However, for the mobile edition, ZK requests are special HTTP
requests.

ZK: Developer's Guide Page 29 of 211 Potix Corporation

Page Title

Each page could have a title that will be displayed as part of the browser's window
caption. Refer to the Processing Instructions section in the ZK User Interface
Markup Language chapter for details.

|<?page title="My Page Title"?> |

Desktops

A ZUML page might include another ZUML pages directly or indirectly. Since these pages are
created for serving the same URL request, they are collectively called a desktop
(org.zkoss.zk.ui.Desktop). In other

word, a desktop is a collection of pages Desktop

for serving the same URL request.

As a ZK application interacts with user, Page 1 Page 2
more pages might be added to a desktop

and some might be removed from a ngg’r']‘;e

desktop. Similarly, a component might Hello, World!
be added to or removed from a page. 0

The createComponents Method

Notice that both pages and desktops are created and remove implicitly. There are no API
to create or remove them. A page is create each time ZUML loads a page. A page is
removed when ZK finds it is no longer referenced. A desktop is created when the first
ZUML page is loaded. A desktop is removed if too many desktops are created for the
specific session.

The createComponents method in the org.zkoss.zk.ui.Executions class creates only
components, not page, even though it loads a ZUML file (aka., page).

Forest of Trees of Components

A component has at most one parent. A component might have multiple children. Some
components accept only certain types of components as children. Some must be a child of
certain type of components. Some don't allow any child at all. For example, Listbox in XUL
accepts Listcols and Listitem only. Refer to Javadoc or XUL tutorials for details.

A component without any parent is called a root component. A page might have multiple
root components, which could be retrieved by the getRoots method.

Component: a Visual Representation and a Java Object

Besides being a Java object in the server, a component has a visual part® in the browser, if

20 If the client is a browser, the visual representation is a DOM element or a set of DOM elements.

ZK: Developer's Guide Page 30 of 211 Potix Corporation

and only if it belongs to a page. When a component is attached to a page, its visual part is
created®'. When a component is detached from a page, its visual part is removed.

There are two ways to attach a component into a page. First, you could call the setpage
method to make a component to become a root component of the specified page. Second,
you could call the setParent, insertBefore Or appendChild method to make it to become a
child of another component. Then, the child component belongs to the same page as to
which the parent belongs.

Similarly, you could detach a root component from a page by calling setpage with null. A
child is detached if it is detached from a parent or its parent is detached from a page.

Identifiers

Each component has an identifier (the get1d method). It is created automatically when a
component is created. Developers could change it anytime. There is no limitation about how
an identifier shall be named. However, if an alphabetical identifier is assigned, developers
could access it directly in Java codes and EL expression embedded in the ZUML page.

<window title="Vote" border="normal">
Do you like ZK? <label id="label"/>
<separator/>
<button label="Yes" onClick="label.value = self.label"/>
<button label="No" onClick="label.value = self.label"/>
</window>

UuID

A component has another identifier called UUID (Universal Unique ID), which application
developers rarely need.

UUID is used by components and Client Engine to manipulate DOM at the browser and to
communicate with the server. More precisely, the id attribute of a DOM element at the client
is UUID.

UUID is generated automatically when a component is created. It is immutable, except the
identifiers of components for representing HTML tags.

HTML relevant components handle UUID different from other set of components: UUID is the
same as ID. If you change ID of a HTML relevant component, UUID will be changed
accordingly. Therefore, old JavaScript codes and servlets will remain to work without any
modification.

21 The visual part is created, updated and removed automatically. Application developers rarely need to
notice its existence. Rather, they manipulate the object part in the server.

ZK: Developer's Guide Page 31 of 211 Potix Corporation

The ID Space

It is common to decompose a visual representation into several ZUML pages. For example, a page
for displaying a purchase order, and a modal dialog for entering the payment term. If all
components are uniquely identifiable in the same desktop, developers have to maintain the
uniqueness of all identifiers for all pages that might created to the same desktop.

The concept of ID spaces is then introduced to resolved this issue. An ID space is a subset of
components of a desktop. The uniqueness is guaranteed only in the scope of an ID space.

The simplest form of an ID space is a window (org.zkoss.zul.Window). All descendant
components of a window (including the window itself) forms an independent ID space. Thus, you
could use a window as the topmost component of each page, such that developers need to
maintain the uniqueness of each page separately.

More generally, any component could form an ID space as long as it implements the
org.zkoss.zk.ui.IdSpace interface. Page also implements the 1dSpace interface, so it is also a
space owner.

The topmost component of an ID space is called the owner of the ID space, which could be
retrieved by the getSpaceOwner method in the Component interface.

If an ID space, say X, is a descendant of another ID ‘ Page P ‘
space, say Y, then space X's owner is part of space Y but
descendants of X is not part of space Y.

As depicted in the figure, there are three spaces: P, A

and C. Space P includes P, A, F and G. Space A includes i \

A, B, C and D. Space C includes C and E. e

Components in the same ID spaces are called fellows. For

example, A, B, C and D are fellows of the same ID space. (O space Owner
. C) Regular Components

To retrieve another fellow, you could use the getFellow

method in the 1dspace interface or the Component
interface.

Notice that the getFellow method can be invoked against any components in the same ID space,
not just the space owner. Similarly, the getSpaceOwner method returns the same object for any
components in the same ID space, no matter it is the space owner or not.

The org.zkoss.zk.ui.Path class provides utilities to simplify the location of a component among
ID spaces. Its use is similar to java.io.File.

Path.getComponent ("/A/C/E") ;
new Path ("A/C", "E").getComponent () ;

ZK: Developer's Guide Page 32 of 211 Potix Corporation

Namespace and ID Space

To let the interpreter able to access the components directly, the namespace concept
(org.zkoss.scripting.Namespace) is introduced. First, each ID space has exactly one
namespace. Second, variables defined in a hamespace are visible to the scripting codes and
EL expressions that belong to the same namespace.

<window border="normal">
<label id="1" value="hi"/> Hi, namespace! Hi, namespace
<zscript>
l.value = "Hi, namespace";
</zscript>
${1l.value}
</window>

In the following example, there are two namspaces. One belongs to window w1 and the other
to window w222, Thus, the b1 button's onClick script refers to the label defined in window
w1, while the b2 button's onClick script refers to the checkbox defined in window w2.

<window id="wl">
<window id="w2">
<label id="c"/>
<button id="bl" onClick="c.value = "OK""/>
</window>
<checkbox id="c"/>
<button id="b2" onClick="c.label = "OK""/>
</window>

Notice the namespace is hierarchical. In other words, zscript in window w2 can see
components in window w1, unless it is overridden in window w2. Thus, clicking button b1 will
change label c in the following example.

<window id="wl">
<window id="w2">
<button id="bl" onClick="c.value = "OK""/>
</window>
<label id="c"/>
</window>

In addition to ZK's assigning components to the namespace, you can assign your variables
to them by use of the setvariable method, such that zscript can reference them directly.

Variable and Functions Defined in zscript

In addition to executing codes, you could define variables and functions in the zscript
element directly as depicted below.

<window id="A>
<zscript>

22 A window implements org.zkoss.zk.ui.IdSpace, SO it forms an independent ID space and namespace.

ZK: Developer's Guide Page 33 of 211 Potix Corporation

Object myvar = new LinkedList () ;
void myfunc () {

}

</zscript>

<button label="add" onClick="myvar.add (some)"/>
<button label="some" onClick="myfunc()"/>
</window>

The variables and methods defined in zscript are stored in the interpreter of the
corresponding scripting language. Each interpreter has exactly one logical scope. In other
words, variables and methods defined in zscript exists in the same logical scope,
regardless of which ID space zscript belongs to. For example, both varl and var2 are
visible to window A and B in the following example.

<window id="A">

<zscript>varl = "abc";</zscript>
<window id="B">
<zscript>var2 = "def";</zscript>
</window>
</window>

Each scripting language is associated with one interpreter. Thus, variables and methods
defined in one language are not visible to another language. For example, varl and var2
belong to two different interpreter (i.e., different logical scopes) as shown below.

<zscript language="Java'">
varl = 123;

</zscript>

<zscript language="JavaScript">
var?2 = 234;

</zscript>

getVariable versus getZScriptVariable
Variables defined in the namespace can be retrieved by use of the getvariable method.

On the other hand, variables defined in zscript is part of the interpret that interprets it.
They are not a part of any namespace. In other words, you can not retrieve them by use
of the getvariable method.

<zscript>
varl = 123; //varl belongs to the interpreter, not any namespace
page.getVariable ("varl"); //returns null

</zscript>

Instead, you have to use getzZScriptVariable to retrieve variables defined in zscript.
Similarly, you can use getzScriptClass to retrieve classes and getZScriptMethod to
retrieve methods defined in zscript. These methods will iterate through all loaded

ZK: Developer's Guide Page 34 of 211 Potix Corporation

interpreters until the specified is found.

If you want to search a particular interpreter, you can use the getInterpreter method to
retrieve the interpreter first, as follows.

page.getInterpreter ("JavaScript") .getVariable ("some"); //interpreter for JavaScript
page.getInterpreter (null) .getVariable ("some"); //interpreter for default language

zscript and EL Expressions

Variable defined in namespaces or zscript are all visible to EL expressions.

<window>
<zscript>
String var = "abc";
self.setVariable ("var2", "xyz", true);
</zscript>
S{var}${var2}
</window>

is equivalent to

<window>
abcxyz
</window>

Note: variables defined in zscript has the higher priority than those defined in the
namespace.

<window>
<zscript>
String var = "abc";
self.setVariable ("var", "xyz", true);
</zscript>
${var}
</window>

is equivalent to

<window>
abc
</window>

It sometimes causes confusion, when you declare a component later as shown in the
following example.

<window>

<zscript>

String var = "abc";

</zscript>

<label id="var" wvalue="A label"/>

${var.value} <!-- Wrong! var is "abc", not the label -->
</window>

ZK: Developer's Guide Page 35 of 211 Potix Corporation

Therefore, it is suggested to use some naming pattern to avoid the confusion. For
example, you can prefix all interpreter variables with zs .

In additions, you shall use local variables if possible. A local variable is visible only to a
particular scope of zscript codes. To declare local variables, you have to specify the
class name for the variable, and enclose it in a scope with curly braces as follows.

<zscript>
{

String var = "abc"; //visible only inside of the enclosing curly brace
}

</zscript>

Events

An event (org.zkoss.zk.ui.event.Event) is used to notify application what happens. Each type
of event is represented by a distinct class. For example, org.zkoss.zk.ui.event.MouseEvent
denotes a mouse activity, such as clicking.

To response to an event, an application must register one or more event listeners to it. There are
two ways to register an event listener. One is by specifying the onxxx attribute in the markup
language. The other is by calling the addEventListener method for the component or the page
you want to listen.

In addition to event triggered by user's activity at the browser, an application could fire events by
use of the sendEvent and postEvent methods from the org.zkoss.zk.ui.event.Events class.

Desktops and Event Processing

As mentioned above, a desktop is a collection of pages for serving the same URL request. A
desktop is also the scope that an event listener could access.

When an event is fired, it is associate with a desktop. ZK separates events based on the
associated desktops, and pipelines events into separated queues. Therefore, events for the same
desktop are processed sequentially. On the other hand, events for different desktops are
processed in parallel.

An event listener is allowed to access any components of any pages of the desktop associated with
the event. It is also allowed to moving components from one page to another as long as they are
in the same desktop. On the other hand, it cannot access components belonging to other
desktops.

Note: Developers can detach a component from one desktop in one event listener, and
then attach it to another desktop in other event listener.

ZK: Developer's Guide Page 36 of 211 Potix Corporation

Desktops and the Creation of Components

When a component is created in an event listener, it is assigned automatically to the
associated desktop of the event being processed. This assignment happens even if the
component is not attached to a page. It means that any component you created in an event
listener can be used in the same desktop that the listener is handling.

When a component is created in a thread other than any event listener, it doesn't belong to
any desktop. In this case, you could attach to any desktop you want as long as the
attachment occurs in a proper event listener. Of course, once the component is attached to a
desktop, it belongs to the desktop forever.

For most applications, it is rarely necessary to create components in a thread other than
event listeners. However, if you have a long operation, you might want to execute it in a
background thread. Then, you could prepare the component tree at the background and then
add it to a desktop when a proper event is received. Refer to the Long Operations section
in the Event Listening and Processing chapter.

ZUML and XML Namespaces

The ZK User Interface Markup Language (ZUML) is a XML-based language used by developers to
describe the visual representation. ZUML is aimed to separate the dependency of the set of
components to use. In other words, different set of components??, such as XUL and XHTML, could
be used simultaneously in the same ZUML page. Different markup languages could be added
transparently. If two or more set of components are used in the same page, developers have to
use the XML namespaces to distinguish them. Refer to the Component Sets and XML
Namespaces section in the ZK User Interface Markup Language chapter if you want to mix
multiple component sets, say XUL and XHTML, in the same page.

Tip: Using XML namespaces in ZUML is optional. You need it only if you want to mix two
or more.

23 Also known as tags. There is one-to-one mapping between components and tags.

ZK: Developer's Guide Page 37 of 211 Potix Corporation

4. The Component Lifecycle

This chapter describes the lifecycles of loading pages and updating pages.

The Lifecycle of Loading Pages

It takes four phases for ZK loaders to load and interpret a ZUML page: the Page Initial Phase, the
Component Creation Phase, the Event Processing Phase, and the Rendering Phase.

The Page Initial Phase

In this phase, ZK processes the processing instructions, called init. If none of such
processing instructions are defined, this phase is skipped.

For each init processing instruction with the class attribute, an instance of the specified
class is constructed, and then its doInit method is called. What the class will do, of course,
depends on your application requirements.

’<?init class="MyInit"?>

Another form of the init processing instruction is to specify a file containing the scripting
codes with the zscript attribute, as follows. Then, the file will be interpreted at the Page
Initial phase.

|<?init zscript="/my/init.zs"?>

Notice that the page is not yet attached to the desktop when the Page Initial phase
executes.

The Component Creation Phase

In this phase, ZK loader interprets an ZUML page. It creates and initializes components
accordingly. It takes several steps as follows.

1. For each element, it examines the if and unless attribute to decide whether it is
effective. If not, the element and all of its child elements are ignored.

2. If the forEach attribute is specified with a collection of items, ZK repeats the following
steps for each item in the collection.

3. Creates a component based on the element name, or by use of the class specified in the
use attribute, if any.

4. Initializes the members one-by-one based on the order that attributes are specified in the
ZUML page.

ZK: Developer's Guide Page 38 of 211 Potix Corporation

5. Interprets the nested elements and repeat the whole procedure.

6. Invokes the afterCompose method if the component implements the
org.zkoss.zk.ui.ext .AfterCompose interface*.

7. After all children are created, the onCreate event is sent to this component, such that
application could initialize the content of some elements later. Notice that the onCreate
events are posted for child components first.

Note: an developer can perform some application-specific initialization by listening to
the onCreate event or implementing AfterCompose. AferCompose is called in the
Component Creation Phase, while the onCreate event is handled by an event listener.

An event listener is free to suspend and resume the execution (such as creating modal
dialogs), while AfterCompose is a bit faster since no need to fork another thread.

The Event Processing Phase
In this phase, ZK invokes each listener for each event queued for this desktop one-by-one.

An independent thread is started to invoke each listener, so it could be suspended without
affecting the processing of other events.

During the processing, an event listener might fire other events. Refer to the Event
Listening and Processing chapter for details.

The Rendering Phase

After all events are processed, ZK renders these components into a regular HTML page and
sends this page to the browser.

To render a component, the redraw method is called. The implementation of a component
shall not alter any content of the component in this method.

The Lifecycle of Updating Pages

It takes three phases for ZK AU Engine to process the ZK requests sent from the clients: the
Request Processing Phase, the Event Processing Phase, and the Rendering Phase.

ZK AU Engine pipelines ZK requests into queues on a basis of one queue per desktop. Therefore,
requests for the same desktop are processed sequentially. Requests for different desktops are
processed in parallel.

The Request Processing Phase

Depending on the request, ZK AU Engine might update the content of affected components

24 The step 3-5 is so-called composing. That is why AfterCompose is hamed.

ZK: Developer's Guide Page 39 of 211 Potix Corporation

such that their content are the same as what are shown at the client.

Then, it posts corresponding events to the queue.

The Event Processing Phase

This phase is the same as the Event Processing Phase in the Component Creation Phase. It
processes events one-by-one in an independent thread.

The Rendering Phase

After all events are processed, ZK renders affected components, generates corresponding ZK
responses, and sends these responses back to the client. Then, Client Engine updates the
DOM tree at the browser based on the responses.

Whether to redraw the whole visual representation of a component or to update an attribute
at the browser all depend on the implementation of components. It is the job of component
developers to balance between interactivity and simplicity.

The Molds

A component could have different appearance even at the same page. The concept is called mold
(aka., template). Developers could dynamically change the mold by use of the setMold method in
the component interface. All components support a mold called default, which is the default
value. Some components might have support two or more molds For example, tabbox supports
both default and accordion molds.

<tabbox><!-- if not specified, the default mold is assumed. -->
<tabs>
<tab label="Default"/> Default

</tabs> ’HmtAﬁDMbn]
< > .

tabpanels The first panel.

<tabpanel> _—

| Second Accordion]

<tabbox mold="accordion">
<tabs>
<tab label="First Accordion"/>
<tab label="Second Accordion"/>
</tabs>
<tabpanels>
<tabpanel>The first panel.</tabpanel>

<tabpanel>The second panel.</tabpanel>
</tabpanels>
</tabbox>
</tabpanel>
</tabpanels>
</tabbox>

ZK: Developer's Guide Page 40 of 211 Potix Corporation

Component Garbage Collection

Unlike many component-based GUI, ZK has no destroy or close method for components. Like W3C
DOM, a component is removed from the browser as soon as it is detached from the page. It is
shown as soon as it is attached to the page.

More precisely, once a component is detached from a page, it is no longer managed by ZK. If the
application doesn't have any reference to it. The memory occupied by the component will be
released by JVM's Garbage Collector.

ZK: Developer's Guide Page 41 of 211 Potix Corporation

5. Event Listening and Processing

This chapter describes how an event is processed.

Add Event Listeners by Markup Languages

The simplest way to add an event listener is to declare an attribute in a ZUML page. The value of
the attribute for listening an event is any Java codes that could be interpreted by BeanShell.

<window title="Hello" border="normal">
<button label="Say Hello"™ onClick="alert ("Hello World!s")"/>
</window>

Add and Remove Event Listeners by Program

There are two ways to add event listeners by program.

Declare a Member

When overriding a component by use of your own class, you could declare a member
function to be an event listener as follows.

In a ZUML page, you declare the use attribute to specify what class you want to use instead
of the default one. As illustrated below, it asks ZK to use the MyClass class instead of

org.zkoss.zul.Window?®.

<window use="MyClass">
</window>

Then, you implement MyWindow.java by extending from the default class as follows.

public class MyWindow extends org.zkoss.zul.Window {
public void onOK() { //add an event listener
...//handles the onOK event (sent when ENTER is pressed)
}
}

If you want to retrieve more information about the event, you could declare as follows.

public void onOK(org.zkoss.zk.ui.event.KeyEvent event) {

}

Different events might be associated with different event objects. Refer to Append C for

25 The default class is defined in lang.xm| embedded in zul.jar.

ZK: Developer's Guide Page 42 of 211 Potix Corporation

more details.

Add and Remove Event Listeners Dynamically

Developers could use the addEventListener and removeEventListener methods of the
org.zkoss.zk.ui.Component interface to dynamically add or remove an event listener. As
illustrated below, the event listener to be added dynamically must implement the

org.zkoss.zk.ui.event.EventListener interface.

void init (Component comp) {

comp.addEventListener ("onClick", new MyListener());

}
class MyListener implements org.zkoss.zk.ui.event.EventListener {
public void onEvent (Event event) throws UiException {
...//processing the event
}
public boolean isAsap() {
return true; //Refer the following section for description

What ASAP Is?

The isAsap method in the EventListener interface defines the emergency of the listener. If
it returns true?®®, the event will be sent from the browser to the server as soon as it happens.

By returning false, the event won't be sent until another ASAP event is about to sent. The
performance of the server is then improved, because the communication frequency between
client and server is reduced.

Notice that it won't affect the correctness, because an application remains idle until an event
is received and the order of arriving events are the same.

Add and Remove Event Listeners to Pages Dynamically

Developers could add event listeners to a page (org.zkoss.zk.ui.Page) dynamically. Once
added, all events of the specified name the are sent to any components of the specified page
will be sent to the listener.

All page-level event listeners are non-ASAP. In other words, the isArap method is ignored.

A typical example is to use a page-level event listener to maintain the modification flag as
follows.

public class ModificationListener implements EventListener {

private final Window owner;

26 ASAP stands for As Soon As Possible.

ZK: Developer's Guide Page 43 of 211 Potix Corporation

private final Page page;
private boolean modified;

public ModificationListener (Window owner) {
//Note: we have to remember the page because unregister might
//be called after the owner is detached
_owner = owner;
_page = owner.getPage();
_page.addEventListener ("onChange", this);
_page.addEventListener ("onSelect", this);
_page.addEventListener ("onCheck", this);

}

/** Called to unregister the event listener.

*/
public void unregister () {
_page.removeEventListener ("onChange", this);
_page.removeEventListener ("onSelect", this);

_page.removeEventListener ("onCheck", this);
}
/** Returns whether the modified flag is set.
*/
public boolean isModified() {
return modified;
}
//-- EventListener --//
public void onEvent (Event event) throws UiException {
~modified = true;
}
public boolean isAsap() {

return false;

The Invocation Sequence

The sequence of invoking event listeners is as follows. Let us assume the onCclick event is
received.

1. Invoke event listeners for the onClick event one-by-one that are added to the targeting
component, if the listeners also implement the org.zkoss.zk.ui.event.Express
interface. The first added, the first called.

2. Invoke the script specified in the onclick attribute of the targeting component, if any.

3. Invoke event listeners for the onClick event one-by-one that are added to the targeting
component, if the listeners don't implement the org.zkoss.zk.ui.event.Express
interface. The first added, the first called.

4. Invoke the onClick member method of the targeting component, if any.

5. Invoke event listeners for the onCclick event one-by-one that are added to the page that

ZK: Developer's Guide Page 44 of 211 Potix Corporation

the targeting component belongs. The first added, the first called.

The org.zkoss.zk.ui.event.Express interface is a decorative interface used to alter the
invocation priority of an event listener. Notice that it is meaningless if the event listener is
added to pages, instead of components.

Abort the Invocation Sequence

You could abort the calling sequence by calling the stopPropagation method in the
org.zkoss.zk.ui.event.Event class. Once one of the event listeners invokes this method,
all following event listeners are ignored.

Send and Post Events from an Event Listener

In addition to receiving events, an application could communicate among event listeners by
posting or sending events to them.

Post Events

By use of the postEvent method in the org.zkoss.zk.ui.event.Events class, an event
listener could post an event to the end of the event queue. It returns immediately after
placing the event into the queue. The event will be processed later after all events preceding
it have been processed.

Send Events

By use of the sendEvent method in the org.zkoss.zk.ui.event.Events class, an event
listener could ask ZK to process the specified event immediately. It won't return until all
event listeners of the specified event has been processed. The event is processed at the
same thread.

Thread Model

For each desktop, events are processed sequentially, so thread model is simple. Like developing
desktop applications, you don't need to worry about racing and multi-threading. All you need to
do is to register an event listener and process the event when invoked.

Tip: Each event listener executes in an independent thread called event processing
thread, while the ZUML page is evaluated in the serviet thread.

Suspend and Resume

For advanced applications, you might have to suspend an execution until some condition is

ZK: Developer's Guide Page 45 of 211 Potix Corporation

satisfied. The wait, notify and notifyAll methods of the org.zkoss.zk.ui.Executions
class are designed for such purpose.

When an event listener want to suspend itself, it could invoke wait. Another thread could
then wake it up by use of notify or notifyall, if the application-specific condition is
satisfied. The modal dialog is an typical example of using this mechanism.

public void doModal () throws InterruptedException {

Executions.wait (mutex); //suspend this thread, an event processing thread
}
public void endModal () {

Executions.notify(mutex); //resume the suspended event processing thread

}

Their use is similar to the wait, notify and notifyAll methods of the java.lang.0Object
class. However, you cannot use the methods of java.lang.Object for suspending and
resuming event listeners. Otherwise, all event processing will be stalled for the associated
desktop.

Notice that, unlike Java Object's wait and notify, whether to use the synchronized block
to enclose Executions' wait and notify is optional. In the above case, we don't have to,
because no racing condition is possible. However, if there is an racing condition, you can use
the synchronized block as what you do with Java Object's wait and notify.

//Thread 1
public void request () {

synchronized (mutex) {
...//start another thread

Executions.wait (mutex); //wait for its completion
}
}
//Thread 2
public void process() {

//process it asynchronously
synchronized (mutex) {
Executions.notify (mutex);

Long Operations

Events for the same desktop are processed sequentially. In other words, an event handler
will block any following handlers. The time blocking user's requests might not be acceptable,
if an event handler takes too much time to execute. Like desktop applications, you have to
create a working thread for long operations to minimize the blocking time.

ZK: Developer's Guide Page 46 of 211 Potix Corporation

Due to the limitations of HTTP, you have to conform with the following rules.

Use the wait method in the org.zkoss.zk.ui.Executions class to suspend the event
handler itself, after creating a working thread.

Because the working thread is not an event listener, it cannot access any components,
unless the components don't belong to any desktop. Thus, you might have to pass
necessary information manually before starting the working thread.

Then, the working thread could crush the information and create components as
necessary. Just don't reference any component that belongs to any desktop.

Use the notify(Desktop desktop, Object flag) Or notifyAll (Desktop desktop,
Object flag) method in the org.zkoss.zk.ui.Executions class in the working thread
to resume the event handler, after the working thread finishes.

The resumed event handler won't be executed immediately until another event is sent
from the client. To enforce an event to be sent, you could use a timer component
(org.zkoss.zul.Timer) to fire an event a moment later or periodically. This event
listener for this timer could do nothing or update the progress status.

Example: A Working Thread Generates Labels Asynchronously

Assume we want create a label asynchronously. Of course, it is non-sense to do such a
little job by applying multi-threading, but you can replace the task with sophisticated one.

//WorkingThread

package test;

public class WorkingThread extends Thread {
private static int cnt;

private Desktop desktop;
private Label label;
private final Object mutex = new Integer (0);

/** Called by thread.zul to create a label asynchronously.
* To create a label, it start a thread, and wait for its completion.
*/
public static final Label asyncCreate (Desktop desktop)
throws InterruptedException {
final WorkingThread worker = new WorkingThread (desktop);
synchronized (worker. mutex) { //to avoid racing
worker.start () ;
Executions.wait (worker. mutex);
return worker. label;

}

public WorkingThread (Desktop desktop) {
_desktop = desktop;

}

public void run () {

ZK: Developer's Guide Page 47 of 211 Potix Corporation

_label = new Label ("Execute "+ ++ cnt);
synchronized (mutex) { //to avoid racing
Executions.notify(desktop, mutex);

Then, we have a ZUML page to invoke this working thread in an event listener, say
onClick.

<window id="main" title="Working Thread">
<button label="Start Working Thread">
<attribute name="onClick">
timer.start ();
Label label = test.WorkingThread.asyncCreate (desktop) ;
main.appendChild (label) ;
timer.stop ()

</attribute>
</button>
<timer id="timer" running="false" delay="1000" repeats="true"/>
</window>

Notice that we have to use a timer to really resume the suspended the event listener
(onClick). It looks odd, but it is a must due to the HTTP limitation: to keep Web page
alive at the browser, we have to return the response when the event processing is
suspended. Then, when the working thread completes its job and notifies the even
listener, the HTTP request was already gone. Therefore, we need a way to 'piggyback’ the
result, which the timer is used for.

More precisely, when the working thread notifies the event listener to resume, ZK only
adds it to a waiting list. And, the listener is really resumed when another HTTP request
arrives (in the above example, it is the onTimer event)

In this simple example, we do nothing for the onTimer event. For a sophisticated
application, you can use it to send back the progressing status.

Another Implementation: No Suspend and Resume

It is possible to implement a long operation without suspend and resume. It is useful if
the synchronization codes are going too complex to debug.

The idea is simple. The working thread save the result in a temporary space, and then the
onTimer event listener pops the result to the desktop.

//WorkingThread?2

package test;

public class WorkingThread2 extends Thread {
private static int cnt;

private final Desktop desktop;

private final List result;

ZK: Developer's Guide Page 48 of 211 Potix Corporation

public WorkingThread?2 (Desktop desktop, List result)
_desktop = desktop;
_result = result;

}

public void run() {
_result.add(new Label ("Execute "+ ++ cnt));

Then, you append the labels in the onTimer event listener.

<window id="main" title="Working Thread2">
<zscript>
int numPending = 0;

</zscript>

<button label="Start Working Thread">
<attribute name="onClick">

++numPending;

timer.start ();

new test.WorkingThread2 (desktop, result).start();
</attribute>

</button>

<attribute name="onTimer">

while (!result.isEmpty()) {
main.appendChild (result.remove (0)) ;
--numPending;

}

if (numPending == 0) timer.stop();
</attribute>

</timer>

</window>

Initialization and Cleanup of Event Processing Thread

Initialization Before Processing Each Event

List result = Collections.synchronizedList (new LinkedList());

<timer id="timer" running="false" delay="1000" repeats="true">

An event listener is executed in an event processing thread. Sometimes, you have to

initialize the thread before processing any event.

A typical example is to initialize the thread for the authentication. Some J2EE or Web
containers store authentication information in the thread local storage, such that they could

re-authenticate automatically when needed.

To initialize the event processing threads, you have to register a class, that implements the
org.zkoss.zk.ui.event.EventThreadInit interface, to the listener element in the WweB-

INF/zk.xml file?,

27 It is described more detailedly in Appendix B in the Developer's Reference.

ZK: Developer's Guide Page 49 of 211

Potix Corporation

Once registered, an instance of the specified class is constructed in the main thread (aka.,
the servlet thread), before starting an event processing thread. Then, the init method of

the instance is called at the context of the event processing thread before doing anything
else.

Notice that the constructor and the init method are invoked at different thread such that
developers could retrieve thread-dependent data from one thread and pass to anther.

Here is an example for the authentication mechanism of JBoss?®. In this example, we retrieve
the information stored in the servlet thread in the constructor. Then, we initialize the event
processing thread when the init method is called.

import java.security.Principal;

import org.jboss.security.SecurityAssociation;
import org.zkoss.zk.ui.Component;

import org.zkoss.zk.ui.event.Event;

import org.zkoss.zk.ui.event.EventThreadInit;

public class JBossEventThreadInit implements EventThreadInit ({

private final Principal principal;

private final Object credential;

/** Retrieve info at the constructor, which runs at the servlet thread. */

public JBossEventThreadInit () {
_principal = SecurityAssociation.getPrincipal();
_credential = SecurityAssociation.getCredential ();

}

//-- EventThreadInit --//

/** Initial the event processing thread at this method. */

public void init (Component comp, Event evt) ({
SecurityAssociation.setPrincipal (_principal);
SecurityAssociation.setCredential (_credential);

Then, in WEB-INF/zk.xml, you have to specify as follows.

<zk>
<listener>
<listener-class>JBossEventThreadInit</listener-class>
</listener>
</zk>

Cleanup After Processed Each Event

Similarly, you might have to clean up an event processing thread after it has processed an
event.

A typical example is to close the transaction, if it is not closed properly.

To cleanup the event processing threads, you have to register a listener class, that

28 http://www.jboss.org

ZK: Developer's Guide Page 50 of 211 Potix Corporation

implements the org.zkoss.zk.ui.event.EventThreadCleanup interface, to the listener
element in the WEB-INF/zk.xml file.

<zk>
<listener>
<listener-class>my.MyEventThreadCleanup</listener-class>
<listener>
</zk>

ZK: Developer's Guide Page 51 of 211 Potix Corporation

6. The ZK User Interface Markup Language

The ZK User Interface Markup Language (ZUML) is based on XML. Each XML element describes
what component to create. A XML attribute describes an initial values to be assigned to the
created component. An XML processing instruction describes how to process the whole page, such
as the page title.

Different sets of components are distinguished by XML namespaces. For example, the namespace
of XUL is http://www.zkoss.org/2005/zul,* and that of XHTML is
http://www.w3.0rg/1999/xhtml.

XML

This section provides the most basic concepts of XML to work with ZK. If you are familiar with
XML, you could skip this section. If you want to learn more, there are a lot of resources on
Internet, such as http://www.w3schools.com/xml/xml_whatis.asp and
http://www.xml.com/pub/a/98/10/guide0.html.

XML is a markup language much like HTML but with stricter and cleaner syntax. It has several
characteristics worth to notice.

Elements Must Be Well-formed

First, each element must be closed. They are two ways to close an element as depicted
below. They are equivalent.

Close by an end tag: <window></window>
Close without an end tag: |<window/>

Second, elements must be properly nested.

Correct: <window>
<groupbox>

Hello World!
</groupbox>
</window>

Wrong: <window>
<groupbox>
Hello World!
</window>
</groupbox>

29 It was called http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul. However ,
many non-XUL features are added, so it is better to use an independent namespace.

ZK: Developer's Guide Page 52 of 211 Potix Corporation

http://www.xml.com/pub/a/98/10/guide0.html
http://www.w3schools.com/xml/xml_whatis.asp
http://www.w3.org/1999/xhtml
http://www.potix.com/2005/zul
http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul

Special Character Must Be Replaced

XML use <element-name> to denote an element, so you have to replace special characters.
For example, you have to use s1t; to represent the < character.

Special Character Replaced With
< &1t;
> >
& &
" "
! '

Alternatively, you could ask XML parser not to interpret a piece of text by use of CDATA as
follows.

<zscript>

<! [CDATA[

void myfunc (int a, int b) {
if (a < 0 && b > 0) {

//do something

}

11>

</script>

It is interesting to notice that backslash (\) is not a special character, so you don't need to
escape it at all.

Attribute Values Must Be Specified and Quoted

Correct: width="100%"

checked="true"

Wrong: width=100%

checked

Comments

A comment is used to leave a note or to temporarily edit out a portion of XML code. To add a
comment to XML, use <!-- and --> to escape them.

<window>
<!-- this is a comment and ignored by ZK -->
</window>

Character Encoding

It is, though optional, a good idea to specify the encoding in your XML such that the XML
parser can interprets it correctly. Note: it must be the first line of the file.

ZK: Developer's Guide Page 53 of 211 Potix Corporation

’<?xml version="1.0" encoding="UTF-8"?> |

In addition to specify the correct encoding, you have to make sure your XML editor supports
it as well.

Namespace

Namespaces are a simple and straightforward way to distinguish names used in XML
documents. ZK uses XML namespaces to distinguish the component name, such that it is OK
to have two components with the same name as long as they are in different namespace. In
other words, ZK uses a XML namespace to represent a component set, such that developers
could mix two or more component sets in the same page, as depicted below.

<html xmlns:="http://www.w3.0rg/1999/xhtml"
xmlns:x="http://www.zkoss.org/2005/zul"
xmlns:zk="http://www.zkoss.org/2005/zk">
<head>
<title>ZHTML Demo</title>
</head>
<body>
<h1>ZHTML Demo</h1>
<table>
<tr>
<td><x:textbox/></td>
<td><x:button label="Now" zk:onClick="addItem()"/></td>
</tr>
</table>

<zk:zscript>
void addItem() {
}
</zk:zscript>
</body>
</html>

where

+ xmlns:x="http://www.zkoss.org/2005/zul" specifies a namespace called
http://www.zkoss.org/2005/zul, and use x to represent this namespace.

+ xmlns:="http://www.w3.0rg/1999/xhtml" specifies a namespace called
http://www.w3.0rg/1999/xhtml, and use it as the default namespace.

+ <html> specifies an element called html from the default namespace, i.e.,
http://www.w3.0rg/1999/xhtml in this example.

+ <x:textbox/> specifies an element called textbox from the name space called
http://www.zkoss.org/2005/zul.

ZK: Developer's Guide Page 54 of 211 Potix Corporation

http://www.potix.com/2005/zul
http://www.potix.com/2005/zul
http://www.potix.com/2005/zul
http://www.potix.com/2005/zk
http://www.potix.com/2005/zul

Auto-completion with Schema

Many IDEs, such Eclipse, supports auto-completion if XML schema is specified as follows.

<window xmlns="http://www.zkoss.org/2005/zul"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.zkoss.org/2005/zul http://www.zkoss.org/2005/zul/zul.xsd">

Conditional Evaluation

The evaluation of an element could be conditional. By specifying the if or unless attribute or
both, developers could control whether to evaluate the associated element.

In the following example, the window component is created only if a is 1 and b is not 2. If an
element is ignored, all of its child elements are ignored, too.

<window 1if="${a==1}" unless="${b==2}">
</window>

The following example controls when to interpret a piece of Java codes.

<textbox id="contributor"/>
<zscript if="${param.contributor}">

contributor.label = Executions.getCurrent () .getParameter ("contributor");
</zscript>

Iterative Evaluation

The evaluation of an element could be iterative. By specifying a collection of objects to the
forEach Attribute, developers could control how many time of the associated element shall be
evaluated. For sake of description, we call an element is an iterative element if it is assigned with
the forEach attribute.

In the following example, the list item is created three times. Notice that you have to use EL
expression to specify the collection.

<listbox>
<zscript>
grades = new String[] {"Best", "Better", "Good"};
</zscript>
<listitem label="${each}" forEach="${grades}"/>
</listbox>

The iteration depends on the type of the specified value of the forEach attribute.
+ Ifjava.util.Collection, it iterates each element of the collection.

«+ Ifjava.util.Map, it iterates each Map.Entry of the map.

ZK: Developer's Guide Page 55 of 211 Potix Corporation

+ Ifjava.util.Iterator, it iterates each element from the iterator.
+ Ifjava.util.Enumeration, it iterates each element from the enumeration.

+ IfObject[], int[], short[], byte[], char[], float[] or double[] is specified, it iterates
each element from the array.

- If null, nothing is generated (it is ignored).

- If neither of above types is specified, the associated element will be evaluated once as if a
collection with a single item is specified.

<listbox>
<listitem label="${each}" forEach="grades"/>
</listbox>

The each Variable

During the evaluation, a variable called each is created and assigned with the item from the
specified collection. In the above example, each is assigned with "Best" in the first iteration,
then "Better" and finally "Good".

Notice that the each variable is accessible both in EL expression and in zscript. ZK will
preserve the value of the each variable if it is defined before, and restore it after the
evaluation of the associated element.

The forEachStatus Variable

The forEachStatus variable is an instance of org.zkoss.ui.util.ForEachStatus. It holds
the information about the current iteration. It is mainly used to get the item of the enclosing
element that is also assigned with the forEach attribute.

In the following example, we use nested iterative elements to generate two listboxes.

<hbox>
<zscript>
classes = new String[] {"College", "Graduate"};
grades = new Object[] {
new String[] {"Best", "Better"}, new String[] {"A++", "A+", "A"}
}i
</zscript>
<listbox width="200px" forEach="${classes}">
<listhead>
<listheader label="${each}"/>
</listhead>

<listitem label="${forEachStatus.previous.each}: ${each}"
forEach="${grades[forEachStatus.index]}"/>
</listbox>
</hbox>

Notice that the forEachsStatus variable is accessible both in EL expression and in zscript.

ZK: Developer's Guide Page 56 of 211 Potix Corporation

College Graduate

College: Best Better: A++
College: Better Better: A+
Better: A

How to Use each and forEachStatus Variables in Event Listeners

It is a bit tricky to use the forEach and forEachStatus variables in event listeners, because
they are available only in the Component Creation Phase®. Thus, the following sample is
incorrect: when the onClick listener is called, the each variable is no longer available.

<window title="Countries" border="normal" width="100%">
<zscript><![CDATA[

String[] countries = {

"China", "France", "Germany", "United Kindom", "United States"};
11></zscript>
<hbox>

<button label="S${each}" forEach="${countries}"

onClick="alert (each)"/> <!-- incorrect!! -->
</hbox>
</window>

Notice that the button's label is assigned correctly because it is done at the same phase -
the Component Creation Phase.

Also notice that you cannot use EL expressions in the event listener. For example, the
following codes fail to execute because the onclick listener is not a legal Java codes (i.e.,
EL expressions are ignored in zscript).

<button label="${each}" forEach="${countries}"
onClick="alert (${each})"/> <!-- incorrect!! -->

A Solution: custom-attributes

The solution is that we have to store the content of each (and forEachStatus)
somewhere such that its content is still available when the listener executes. You can
store its content anywhere, but there is a simple way to do it as follows.

<window title="Countries" border="normal" width="100%">
<zscript><! [CDATA[

String[] countries = {

"China", "France", "Germany", "United Kindom", "United States"};
]11></zscript>
<hbox>

<button label="${each}" forEach="${countries}"

onClick="alert (self.getAttribute ("country"))">

<custom-attributes country="${each}"/>
</button>

30 Refer to the Component Lifecycle chapter for more details.

ZK: Developer's Guide Page 57 of 211 Potix Corporation

</hbox>
</window>

Like button's label, the properties of custom attributes are evaluated in the Component
Creation Phase, so you can use each there. Then, it is stored to a custom attribute which
will last as long as the component exists (or until being removed programmingly).

Implicit Objects

For scripts embedded in a ZUML page, there are a set of implicit objects that enable developers to
access components more efficiently. These objects are available to the Java codes included by the
zscript element and the attributes for specifying event listeners. They are also available to EL
expressions.

For example, self is an instance of org.zkoss.zk.ui.Component to represent the component
being processing. In the following example, you could identify the component in an event listener
by self.

|<button label="Try" onClick="alert (self.label)"/>

Similarly, event is the current event being processed by an event listener. Thus, the above
statement is equivalent to

|<button label="Try" onClick="alert (event.target.label)"/> |

List of Implicit Objects

Object Name Description

self org.zkoss.zk.ui.Component

The component itself.

spaceOwner org.zkoss.zk.ui.IdSpace

The space owner of this component. It is the same as

self.spaceOwner.

page org.zkoss.zk.ui.Page

The page. It is the same as self.page.

desktop org.zkoss.zk.ui.Desktop

The desktop. It is the same as self.desktop.

session org.zkoss.zk.ui.Session

The session. It is similar to javax.servlet.http.HttpSession.

31 ZK session actually encapsulates the HTTP session to make ZK applications independent of HTTP.

ZK: Developer's Guide Page 58 of 211 Potix Corporation

Object Name

Description

componentScope

java.util.Map

A map of attributes defined in the component. It is the same as the
getAttributes method in the org.zkoss.zk.ui.Component
interface.

spaceScope

java.util.Map

A map of attributes defined in the ID space containing this
component.

pageScope

java.util.Map

A map of attributes defined in the page. It is the same as the
getAttributes method in the org.zkoss.zk.ui.Page interface.

desktopScope

java.util.Map

A map of attributes defined in the desktop. It is the same as the
getAttributes method in the org.zkoss.zk.ui.Desktop
interface.

sessionScope

java.util.Map

A map of attributes defined in the session. It is the same as the
getAttributes method in the org.zkoss.zk.ui.Session
interface.

applicationScope

java.util.Map

A map of attributes defined in the web application. It is the same as
the getAttributes method in the org.zkoss.zk.ui.WebApp
interface.

requestScope

java.util.Map

A map of attributes defined in the request. It is the same as the
getAttributes method in the org.zkoss.zk.ui.Execution
interface.

arg

java.util.Map

The arg argument passed to the createComponents method in the
org.zkoss.zk.ui.Executions class. It is never null.

Notice that arg is available only when creating the components for
the included page (the first argument of createComponents). On
the other hand, all events, including onCreate, are processed later.
Thus, if you want to access arg in the onCreate's listener, use the
getArg method of the org.zkoss.zk.ui.event.CreateEvent class.

It is the same as self.desktop.execution.arg.

ZK: Developer's Guide

Page 59 of 211 Potix Corporation

Object Name Description
each java.lang.Object

The current item of the collection being iterated, when ZK evaluates
an iterative element. An iterative element is an element with the
forEach attribute.

forEachStatus org.zkoss.zk.ui.util.ForEachStatus

The status of an iteration. ZK exposes the information relative to
the iteration taking place when evaluating the iterative element.

event org.zkoss.zk.ui.event.Event or derived

The current event. Available for the event listener only.

Information about Request and Execution

The org.zkoss.zk.ui.Execution interface provides information about the current execution,
such as the request parameters. To get the current execution, you could do one of follows.

+ Ifyou are in a component, use getDesktop () .getExecution ().

« If you don't have any reference to component, page or desktop, use the getCurrent
method in the org.zkoss.zk.ui.Executions class.

Processing Instructions

The XML processing instructions describe how to process the ZUML page.

The page Directive

<?page [id="..."] [title="..."] [style="..."] [language="xul/html"]
[zscript-language="Java"]?>

It describes attributes of a page.

Note: You can place the page directive in any location of a XML document, but the
language attribute is meaningful only if the directive is located at the topmost level, i.e.,
at the the same level as the root element.

Attribute Name Description
id [Optional][Default: generated automatically]

Specifies the identifier of the page, such that we can retrieve it
back.

Refer to the Identify Pages section in the Advanced Features
chapter for details.

ZK: Developer's Guide Page 60 of 211 Potix Corporation

Attribute Name

Description

title [Optional][Default: none]
Specifies the page title that will be shown as the title of the
browser.
It can be changed dynamically by calling the setTitle method in
the org.zkoss.zk.ui.Page interface.

style [Optional][Default: width:100%]
Specifies the CSS style used to render the page. If not specified, it
depends on the mold. The default mold uses width:100% as the
default value.

language [Optional][Default: depending on the extension][xul/html | xhtml]

Specifies the language of this page.

Currently, it supports xul/html and xhtml.

zscript-language

[Optional][Default: Java][Jgava | JavaScript | Ruby | Groovy]

Specifies the default scripting language, which is assumed if a
zscript element doesn't specify any scripting language explicitly.

If this option is omitted, Java is assumed. Currently ZK supports
four different languages: Java, JavaScript, Ruby and Groovy. This
option is case insensitive.

For example, if you want to use JavaScript as the default scripting
language, you can do as follows.

<?page zscript-language="JavaScript"?>
<script>
var m = function () {
VA
}
</script>

Notice that deployers can extend the number of supported scripting
languages. Refer to the How to Support More Scripting
Languages section.

The component Directive

<?component name="myName" macro-uri="/mypath/my.zul"

[propl="valuel"]

[prop2="value2"]...?>

<?component name="myName" [class="myPackage.myClass"]

[extends="existentName"] [mold-name="myMoldName"] [mold-uri="/myMoldUri"]

ZK: Developer's Guide

Page 61 of 211 Potix Corporation

[propl="valuel"] [propZ="valuel2"]...?>

Defines a new component for a particular page. Components defined in this directive is
visible only to the page with this directive. To define components that can be used in any
page, use the language addon, which is a XML file defining components for all pages in a
Web application®.

There are two formats: by-macro and by-class.

The by-macro Format

<?component name="myName" macro-uri="/mypath/my.zul" [inline="true|false"]
[class="myPackage.myClass"] [propl="valuel"] [prop2="value2"]...?>

Defines a new component based on a ZUML page. It is called a macro component. In
other words, once an instance of the new component is created, it creates child
components based on the specified ZUML page (the macro-uri attribute). For more
details, refer to the Macro Components chapter.

The by-class Format

<?component name="myName" [class="myPackage.myClass"]
[extends="existentName"] [mold-name="myMoldName"] [mold-uri="/myMoldUri"]
[propl="valuel"] [propZ2="valuel2"]...?>

Defines a new component, if the extends attribute is not specified, based on a class. It is
called a native component. The class must implement the org.zkoss.zk.ui.Component
interface.

To define a new component, you have to specify at least the class attribute, which is
used by ZK to instantiate a new instance of the component.

In addition to defining a brand-new component, you can override properties of existent
components by specifying extends="existentName". In other words, if extends is
specified, the definition of the specified component is loaded as the default value and then
override only properties that are specified in this directive.

For example, assume you want to define a new component called mywindow by use of
MyWindow instead of the default window, org.zkoss.zul.Window in @ ZUML page. Then,
you can declare it as follows.

<?component name="mywindow" extends="window" class="MyWindow"?>
<mywindow>
</mywindow>

It is equivalent to the following codes.

32 Language addon is described in the Component Development Guide.

ZK: Developer's Guide Page 62 of 211 Potix Corporation

<window use="MyWindow">

</window>

Similarly, you could use the following definition to use OK as the default label and a blue
border for all buttons specified in this page.

<?component name="okbutton" extends="button" label="OK"

style="border:1lpx solid blue"?>

Notice the new component name can be the same as the existent one. In this case, all
instances of the specified type of component will use the initial properties you assigned,
as if it hides the existent definition. For example, the following codes make all buttons to
have a blue border as default.

<?button name="button" extends="button" style="border:lpx solid blue"?>
<pbutton/> <!-- with blue border -->

For more information, refer to the Developer's Reference.

Attribute Name

Description

name

[Required]

The component name.

macro-uri

[Required, if the by-macro format is used][EL is not allowed]

Used by the by-macro format to specify the URI of the ZUML page,
which is used as the template to create components.

class [Optional]
Used with both the by-class and by-macro formats to specify the
class to instantiate an instance of such kind of components.
extends

[Optional]

Used with the by-class format to denote the component name to
use its properties as the default value, and then override only
properties that are specified in this directive.

If not specified, any existent definition is ignored. The new
component is brand-new, and defined completely with properties
specified in this directive.

mold-name

[Optional][Default: default]

Used with the by-class format to specify the mold name. If mold-
name is specified, mold-uri must be specified, too.

mold-uri

[Optional][EL is allowed]

Used with the by-class format to specify the mold URI. If mold-
uri is specified but mold-name is not specified, the mold name is

ZK: Developer's Guide

Page 63 of 211 Potix Corporation

Attribute Name Description

assumed as default.

propl, propZ... [Optional]

Used with both the by-class and by-macro formats to specify the
initial properties (aka., members) of a component.

The initial properties are applied automatically if a component is
created by ZUML (aka., specified as part of a ZUML page).

On the other hand, they are not applied if they are created
manually (i.e., by Java codes). If you still want them to be applied,
you have to invoke the applyProperties method.

The init Directive
<?init class="..." [arg0="..."] [argl="..."]1 [argz2="..."] [arg3="..."]7?>
<?init zscript="..." [arg0="..."] [argl="..."] [arg2="..."] [arg3="..."]1?>

There are two formats. The first format is to specify a class that is used to do the
application-specific initialization. The second format is to specify a zscript file to do the
application-specific initialization.

The initialization takes place before the page is evaluated and attached to a desktop. Thus,
the getDesktop, getId and getTitle method will return null, when initializing. To retrieve
the current desktop, you could use the org.zkoss.zk.ui.Execution interface.

You could specify any number of the init directive. If you choose the first format, the
specified class must implement the org.zkoss.zk.ui.util.Initator interface. Once
specified, an instance of the class is constructed and its doInit method is called, before the
page is evaluated.

In addition, the dorinally method is called, after the page has been evaluated. The
doCatch method is called if an exception occurs. Thus, this directive is not limited to
initialization. You could use it for cleanup and error handling.

If you choose the second format, the zscript file is evaluated and the arguments (argo,
argl,...) will be passed as a variable called args whose type is Object[].

ZK: Developer's Guide Page 64 of 211 Potix Corporation

Attribute Name Description
class [Optional]

A class name that must implement the
org.zkoss.zk.ui.util.Initator interface.

The doInit method is called in the Page Initial phase (i.e., before
the page is evaluated). The doFinally method is called after the
page has been evaluated. The doCcatch method is called if an
exception occurs during the evaluation.

zscript [Optional]

A script file that will be evaluated in the Page Initial phase.

arg0, argl, argz, [Optional]
arg3, ...
You could specify any number of arguments. It will be passed to the

doInit method if the first format is used, or as the args variable if
the second format is used. Note: the first argument is arg0, the
second is argl and follows.

The variable-resolver Directive

<?variable-resolver class="..."?>

Specifies the variable resolver that will be used by the zscript interpreter to resolve
unknown variables. The specified class must implement the
org.zkoss.zk.ui.util.VariableResolver interface.

You can specify multiple variable resolvers with multiple variable-resolver directives. The
later declared one has higher priority.

The following is an example when using ZK with the Spring framework. It resolves Java
Beans declared in the Spring framework, such that you access them directly.

|<?variable—resolver class="org.zkoss.zkplus.spring.DelegatingVariableResolver"?>

Refer to Small Talk: ZK with Spring DAO and JDBC, Part II for more details.

Attribute Name Description
class [Required]

A class name that must implement the
org.zkoss.zk.ui.util.VariableResolver interface.

An instance of the specified class is constructed and added to the
page.

ZK: Developer's Guide Page 65 of 211 Potix Corporation

http://zk1.sourceforge.net/smalltalks/springdao1/sdao1.html

The import Directive

<?import uri="..."?>

It imports the component definitions and initiators defined in another ZUML page. In other
words, it imports the component and init directives from the specified page. Notice that
directives other than component and init are ignored to avoid any confusion.

A typical use is that you put a set of component definitions in one ZUML page, and then
import it in other ZUML pages, such that they share the same set of component definitions,
additional to the system default.

<!-- sgpecial.zul: Common Definitions -->

<?init zscript="/WEB-INF/macros/special.zs"?>

<?component name="special" macro-uri="/macros/special.zuml" class="Special"?>
<?component name="another" macro-uri="/WEB-INF/macros/another.zuml"?>

where the special class is assumed to be defined in /WEB-INF/macros/special.zs.

Then, other ZUML pages can share the same set of component definitions as follows.

<?import uri="special.zul"?>
<special/><!-- you can use the component defined in special.zul -->

Unlike other directives, the import directives must be at the topmost level, i.e., at the the
same level as the root element.

Attribute Name Description
uri [Required]

The URI of a ZUML page which the component definitions will be
imported from.

The 1ink and meta Directives

<?link [href="uri"] [nameO="valueO"] [namel="valuel"] [namel2="valuel2"]?>
<?meta [name(0="value(0"] [namel="valuel"] [nameZ="valuel"]?>

These are so-called header elements in HTML. Currently only HTML-based clients (so-called
browsers) support them.

Developers can specify whatever attributes with these header directives. ZK only encodes
the URI of the href attribute (by use of the encodeURL method of the Executions class). ZK
generates all other attributes directly to the client.

Notice that these header directives are effective only for the main ZUL page. In other words,
they are ignored if a page is included by another pages or servlets. Also, they are ignored if
the page is a zhtml file.

|<?link rel="alternate" type="application/rss+xml" title="RSS feed" |

ZK: Developer's Guide Page 66 of 211 Potix Corporation

href="/rssfeed.php"?>
<?link rel="shortcut icon" type="image/x-icon" href="/favicon.ico"?>

<window title="My App">
My content

</window>

ZK Attributes

ZK attributes are used to control the associated element, other than initializing the data member.

The use Attribute

It specifies a class to create a component instead of the default one. In the following
example, MyWindow is used instead of the default class, org.zkoss.zul.Window.

’<window use="MyWindow" />

The if Attribute

It specified the condition to evaluate the associated element. In other words, the associated
element and all its child elements are ignored, if the condition is evaluated to false.

The unless Attribute

It specified the condition not to evaluate the associated element. In other words, the
associated element and all its child elements are ignored, if the condition is evaluated to
true.

The forEach Attribute

It specifies a collection of objects, such that the associated element will be evaluated
repeatedly against each object in the collection. If not specified or empty, this attribute is
ignored. If non-collection object is specified, it is evaluated only once as if a single-element
collection is specified.

The forEachBegin Attribute

It is used with the forEach attribute to specify the index (starting from 0) that the iteration
shall begin at. If not specified, the iteration begins at the first element, i.e., 0 is assumed.

If forEachBegin is greater than or equals to the number of elements, no iteration is
performed.

Note: forEachStatus.index is absolute with respect to the underlying collection, array or
other type. For example, if forEachBegin is 5, then the first value of forEachStatus.index

ZK: Developer's Guide Page 67 of 211 Potix Corporation

with be 5.

The forEachEnd Attribute

It is used with the forEach attribute to specify the index (starting from 0) the iteration shall
ends at (inclusive). If not specified, the iterations ends at the last element.

If forEachEnd is greater than or equals to the number of elements, the iteration ends at the
last element.

ZK Elements

ZK elements are used to control ZUML pages other than creating components.

The zk Element
<zk>...</zk>
It is a special element used to aggregate other components. Unlike a real component (say,

hbox or div), it is not part of the component tree being created. In other words, it doesn't
represent any component. For example,

<window>
<zk>
<textbox/>
<textbox/>
</zk>
</window>

is equivalent to

<window>
<textbox/>
<textbox/>

</window>

Then, what is it used for?

Multiple Root Elements in a Page

Due to XML's syntax limitation, we can only specify one document root. Thus, if you have
multiple root components, you must use zk as the document root to group these root
components.

<?page title="Multiple Root"?>
<zk>
<window title="First">

</window>

ZK: Developer's Guide Page 68 of 211 Potix Corporation

<window title="Second" if="${param.secondRequired}">

</window>
</zk>

Iteration Over Versatile Components

The zk element, like components, supports the forkEach attribute. Thus, you could use it
to generate different type of components depending on the conditions. In the following
example, we assume mycols is a collection of objects that have several members,
isUseText (), isUseDate () and isUseCombo ().

<window>
<zk forEach="${mycols}">
<textbox if="S$S{each.useText}"/>
<datebox if="S{each.useDate}"/>
<combobox if="${each.useCombo}"/>

</zk>
</window>
Attribute Name Description
if [Optional][Default: true]
Specifies the condition to evaluate this element.
unless [Optional][Default: false]
Specifies the condition not to evaluate this element.
forEach [Optional][Default: ignored]

It specifies a collection of objects, such that the zk element will be
evaluated repeatedly against each object in the collection. If not
specified or empty, this attribute is ignored. If non-collection object
is specified, it is evaluated only once as if a single-element
collection is specified.

The zscript Element

<zscript [language="Java"]>Scripting codes</zscript>
<zscript src="uri" [language="Java"]/>

It defines a piece of the scripting codes, say the Java codes, that will be interpreted when
the page is evaluated. The language of the scripting codes is, by default, Java (see below).
You can select a different language by use the language attribute.

The zscript element has two formats as shown above. The first format is used to embed
the scripting codes directly in the page. The second format is used to reference an external
file that contains the scripting codes.

ZK: Developer's Guide Page 69 of 211 Potix Corporation

Attribute Name Description
src [Optional][Default: none]

Specifies the URI of the file containing the scripting codes. If
specified, the scripting codes will be loaded as if they are embedded
directly.

The src attribute supports browser and locale dependent URI. In
other words, you can specify ~ or * to denote different context
path, browser and locale-dependent information. Refer to the
Internationalization chapter for details.

Note: the file shall contain the source codes of the selected
language that can be interpreted directly. The encoding must be
UTF-8. Don't specify a class file (aka. byte codes).

language [Optional][Default: gava or as specified in the page directive]
[Allowed Values: Jgava | JavaScript | Ruby | Groovy]

It specifies the scripting language in which the scripting codes are
written.

if [Optional][Default: true]

Specifies the condition to evaluate this element.
unless [Optional][Default: false]

Specifies the condition not to evaluate this element.

How to Select a Different Scripting Language

A page could have scripts in multiple different scripting language.

<button onClick="javascript:do something in js()"/>
<zscript language="groovy">
do_something in Groovy();

</zscript>

If the scripting language is omitted, Java is assumed. If you'd like to change the default
scripting language, use the page directive as follows.

<?page zscript-language="Groovy"?>
<zscript>

def name = "Hello World!";
</zscript>

How to Support More Scripting Languages

Currently ZK supports Java, JavaScript, Ruby and Groovy. However, it is easy to extend:

ZK: Developer's Guide Page 70 of 211 Potix Corporation

1. Provides a class that implements the org.zkoss.zk.scripting.Interpreter
interface. Instead of implementing it directly, you can derive from the
org.zkoss.zk.scripting.util.GenericInterpreter class, if you'd like to handle
namespaces directly. Or, you can derive from the
org.zkoss.scripting.bsh.BSFInterpreter class, if the interpreter supports BSF
(Bean Scripting Framework).

2. Declares the scripting language in either WEB-INF/zk.xml, or zk/config.xml.

<zscript-config>
<zscript-language>
<language-name>SuperJava</language-name><!-- case insensitive --!>
<interpreter-class>my.MySuperJavalnterpreter</interpreter-class>
</zscript-language>
</zscript-config>

Refer to the Developer's Reference for the details about WEB-INF/zk.xml. Refer to the
Component Development Guide for the details about zk/config.xml.

The attribute Element

It defines a XML attribute of the enclosing element. The content of the element is the
attribute value, while the name attribute specifies the attribute name. It is useful if the value
of an attribute is sophisticated, or the attribute is conditional.

Attribute Name Description
name [Required]

Specifies the attribute name.
trim [Optional][Default: false]

Specifies whether to omit the leading and trailing whitespaces of
the attribute value.

if [Optional][Default: none]

Specifies the condition to evaluate this element.
unless [Optional][Default: none]

Specifies the condition not to evaluate this element.

The variables element

It defines a set of variables. It is equivalent to the setvariable method of Component, if it
has a parent component, and page, if it is declared at the page level.

As depicted below, variables is convenient to assign variables without programming.

|<window> |

ZK: Developer's Guide Page 71 of 211 Potix Corporation

<variables rich="simple" simple="intuitive"/>
</window>

It is equivalent to

<window>
<zscript>
self.setVariable ("rich", "simple", false);
self.setVariable ("simple", "intuitive", false);
</zscript>
</window>

Of course, you can specify EL expressions for the values.

<window>
<window id="w" title="Test">
<variables title="${w.title}"/>

1: s(title) N

</window> 1: Test
2: S${title} 2:
</window>

Like Component's setvVariable, you can control whether to declare variables local to the
current ID space as follows. If not specified, local="false" is assumed.

|<variables simple="rich" local="true"/>

The custom-attributes element

It defines a set of custom attributes. Custom attributes are objects associated with a
particular scope. Acceptable scopes include component, space, page, desktop, session and
application.

As depicted below, custom-attributes iS convenient to assign custom attributes without
programming.

<window>
<custom-attributes main.rich="simple" very-simple="intuitive"/>
</window>

It is equivalent to

<window>
<zscript>
self.setAttribute ("main.rich", "simple");
self.setAttribute ("very-simple", "intuitive");
</zscript>
</window>

Moreover, you could specify what scope to assign the custom attributes to.

<window id="main" title="Welcome">
<custom-attributes scope="desktop" shared="${main.title}"/>

ZK: Developer's Guide Page 72 of 211 Potix Corporation

’</window>

It is equivalent to

<window id="main">
<zscript>
desktop.setAttribute ("shared", main.title);
</zscript>
</window>

Notice that EL expression is evaluated against the component being created. Sometime it is
subtle to notice. For example, s{componentScope.simple} is evaluated to null, in the
following codes. Why? It is a shortcut of <label value="${componentScope.simple}"/>. In
other words, the component, self, is the label rather than the window, when the EL is
evaluated.

<window>
<custom-attributes simple="intuitive"/>
${componentScope.simple}

</window>

is equivalent to

<window>

<custom-attributes simple="intuitive"/>

<label value="${componentScope.simple}"/><!-- self is label not window -->
</window>

Tip: Don't confuse <attribute> with <custom-attributes>. They are irrelevant. The
attribute element is a way to define a XML attribute of the enclosing element, while the
custom-attributes element is used to assign custom attributes to particular scopes.

Attribute Name Description

scope [Optional][Default: component]

Specifies what scope to associate the custom attributes to.

if [Optional][Default: none]

Specifies the condition to evaluate this element.

unless [Optional][Default: none]

Specifies the condition not to evaluate this element.

Component Sets and XML Namespaces

To allow mix two or more component sets in the same ZUML page, ZK uses XML namespaces to
distinguish different sets of components. For example, the namespace of XUL is
http://www.zkoss.org/2005/zul, and that of XHTML is http://www.w3.0rg/1999/xhtml.

ZK: Developer's Guide Page 73 of 211 Potix Corporation

http://www.w3.org/1999/xhtml
http://www.potix.com/2005/zul/

On the other hand, most pages uses only one component set. To make such pages easier to write,
ZK determines the default nhamespace based on the extension. For example, the xul and zul
extensions imply the XUL namespace. Therefore, developers need only to associate ZUML pages
with a proper extension, and then don't need to worry about XML namespace any more.

Standard Namespaces

As stated before, each set of components is associated with an unique namespace. However,
developers might develop or use additional components from 3™ party, so here we list only
the namespaces that are shipped with the ZK distribution.

Namespace Description
http://www.zkoss.org/2005/zul The namespace of the XUL component set.
http://www.w3.0rg/1999/xhtml The namespace of the XHTML component set.
http://www.zkoss.org/2005/zk ZK namespace. It is the reserved namespace for

specifying ZK specific elements and attributes.

It is optional to specify namespaces in ZUML pages, until there are conflicts. ZK determined
which namespace to use by examining the extension of a ZUML page. For the .zul and .xul
extensions, the namespace of XUL is assumed. For html, xhtml and zhtml, the namespace
of XHTML is assumed.

To mix with another markup language, you have to use xmlns to specify the correct
namespace.

<window xmlns:h="http://www.w3.0rg/1999/xhtml">
<h:div>
<button/>
</h:div>
</window>

For the XHTML components, the onClick and onChange attributes are conflicts with ZK's
attributes. To resolve, you have to use the reserved namespace,
http://www.zkoss.org/2005/zk, as follows.

<?taglib uri="/WEB-INF/tld/zk/core.dsp.tld" prefix="u" 2>

<html xmlns:x="http://www.zkoss.org/2005/zul"
xmlns:zk="http://www.zkoss.org/2005/zk">
<head>
<title>ZHTML Demo</title>
</head>
<body>
<script>
function woo () { //running at the browser
}
</script>

<zk:zscript>

ZK: Developer's Guide Page 74 of 211 Potix Corporation

http://www.potix.com/2005/zul
http://www.potix.com/2005/zul

void addItem() { //running at the server
}
</zk:zscript>
<x:window title="HTML App">
<input type="button" value="Add Item"
onClick="woo ()" zk:onClick="addItem()"/>
</x:window>
</body>

In this example, the onclick attribute is a ZHTML's attribute to specify JavaScript codes to
run at the browser. On the other hand, the zk:onClick is a reserved attribute for specify a

ZK event handler.

Notice that the namespace prefix, zk, is optional for the zscript element, because ZHTML
has no such element and ZK has enough information to determine it.

Also notice that you have to specify the XML namespace for the window component, because
it is from a different component set.

ZK: Developer's Guide Page 75 of 211 Potix Corporation

7. ZUML with the XUL Component Set

This chapter describes the set of XUL components. Unlike other implementation, XUL components
of ZK is optimized for co-operating across Internet. Some components might not be totally
compliant with XUL standards. For sake of convenience, we sometimes refer them as ZUL

components.

Basic Components

Label

A label component represents a piece of text.

</window>

<window border="normal">
Hello World

If you want to specify attribute to a label, you have to specify <1abel> explicitly as follows.

Hello

</window>

<label style="color:

<window border="normal">

red" value="Hello World"/>

Hello World

Tip: ZUML is XML, not HTML, so it doesn't accept &«nbsp;.
instead.

However, you can use

The pre, hyphen, maxlength and multiline Properties

You can control how a label is displayed with the pre, hyphen , and maxlength Properties.
For example, if you specify pre to be true, all white spaces, such as new line, space and
tab, are preserved.

ZK: Developer's Guide

hyphen | pre maxlenth Description
false | false positive |Truncated the characters that exceeds the specified
maxlength.
true any positive |If the length of a word exceeds maxlength, the word is
hypernated.
false true any maxlength is ignored.
any any 0 pyphen is ignored.
<window border="normal" width="200px">
<vbox>
<label value="Hello, World!" maxlength="5"/>
<label value="Hello, WorldChampion!"™ hyphen="true" maxlength="10"/>

Page 76 of 211 Potix Corporation

<label pre="true">
<attribute name="value">aa Hello...

bb c Hello, WorldChamp-

dd ef</attribute> ion!

</label> aa
</vbox> bb ¢

vhox dd ef
</window>

The multiline property is similar to the pre property, except it preserves only the new
lines and the white spaces at the beginning of each line.

Buttons

There are two types of buttons: button and toolbarbutton. They behave similar except the
appearance is different. The button component uses HTML BUTTON tag, while the
toolbarbutton component uses HTML A tag.

You could assign a label and an image to a button by the label and image properties. If
both are specified, the dir property control which is displayed up front, and the orient
property controls whether the layout is horizontal or vertical.

<button label="Left" image="/img/folder.gif" width="125px"/> -
<button label="Right" image="/img/folder.gif" dir="reverse" =

gt
RSN
<button label="Above" image="/img/folder.gif" orient="vertical"
width="125px"/> Below

<button label="Below" image="/img/folder.gif" orient="vertical" =
dir="reverse" width="125px"/>

In addition to identifying images by URL, you could assign a dynamically generated image to
a button by use of the setImageContent method. Refer to the following section for details.

Tip: The setImageContent method is supplied by all components that has the image
property. Simplicity put, setImageContent is used for dynamically generated images,
while image is used for images identifiable by URL.

The onClick Event and href Property

There are two ways to add behaviors to button and toolbarbutton. First, you could
specify a listener for the onclick event. Second, you could specify an URL for the href
property. If both are specified, the href property has the higher priority, i.e., the onClick
event won't be sent.

<button onClick="do something in Java () "/>
<button href="/another page.zul"/>

The sendRedirect Method of the org. zkoss. zk .ui .Execution Interface

When processing an event, you could decide to stop processing the current desktop and

ZK: Developer's Guide Page 77 of 211 Potix Corporation

redirect to anther page by use of the sendredirect method. In other words, the following
two buttons are equivalent (from user's viewpoint).

<pbutton onClick="Executions.sendRedirect ("another.zul")"/>
<button href="another.zul"/>

Since the onClick event is sent to the server for processing, you could add more logic
before invoking sendRedirect, such as redirecting to another page only if certain
condition is satisfied.

On the other hand, the href property is processed completely at the client side. Your
application won't be noticed, when users clicks on the button.

Radio and Radio Group

A radio button is a component that can be turned on and off. Radio buttons are grouped
together in a group, called radiogroup. Only one radio button with the same group may be
selected at a time.

<radiogroup onCheck="alert (self.selectedItem.label)">
<radio label="Apple"/>
<radio label="Orange"/>
<radio label="Banana"/>

</radiogroup>

Versatile Layouts

You can mix radiogroup and radio to have the layout you want, as illustrated below.

<radiogroup>
<grid>
<rows>
<row><radio label="Apple" selected="true"/> Fruit, music or computer</row>
<row><radio label="Orange"/><textbox/></row>
<row><radio label="Banana"/><datebox/></row>

</rows>

</grid> @ Apple Fruit, music or computer
</radiogroup> O orange
The radio button belongs to the nearest/ ~'Banana il

ancestor radiogroup. You can even nest one radio group to another as follow. Each of
them operate independently, though there might be some sort of visual overlap.

<radiogroup>
<grid>
<rows>
<row><radio label="Apple" selected="true"/> Fruit, music or computer</row>
<row><radio label="Orange"/>
<radiogroup>
<radio label="Small"/>
<radio label="Large" selected="true"/>

ZK: Developer's Guide Page 78 of 211 Potix Corporation

</radiogroup>
</row>
<row><radio label="Banana"/><datebox/></row>

</rows>
</grid> EEApme Fruit, music or computer
</radiogroup>) orange Cismall @ Large
C'Banana Bl
Image

An image component is used to display an image at the browser. There are two ways to
assign an image to an image component. First, you could use the src property to specify a
URI where the image is located. This approach is similar to what HTML supports. It is useful
if you want to display a static image, or any image that can be identified by URL.

|<image src="/some/my.jpg"/>

Locale Dependent Image

Like using any other properties that accept an URI, you could specify "*" for identifying a
Locale dependent image. For example, if you have different image for different Locales,
you could use as follows.

|<image src="/my*.png" |

Then, assume one of your users is visiting your page with de_DE as the preferred Locale.
Zk will try to locate the image file called /my de DE.png. If not found, it will try
/my_de.png and finally /my.png.

Refer to the Browser and Locale Dependent URI section in the Internationalization
chapter for details.

Second, you could use the setContent method to assign the content of an image into an
image component directly. Once assigned, the image displayed at the browser is updated
automatically. This approach is useful if an image is generated dynamically.

For example, you could generate a map for the location specified by a user as below.

Location: <textbox onChange="updateMap (self.value)"/>
Map: <image id="image"/>
<zscript>
void updateMap (String location) {
if (location.length() > 0)
image.setContent (new MapImage (location));
}

</zscript>

In the above example, we assume you have a class called MapImage for generating a map of
the specified location, which is so-called business logic.

Notice that the image component accepts the content only in the org.zkoss.image.Image

ZK: Developer's Guide Page 79 of 211 Potix Corporation

interface. If the image generated by your tool is not in this format, you could use the
org.zkoss.image.AImage class to wrap a binary array of data, a file or an input stream into
the Image interface.

In traditional Web applications, caching a dynamically generated image is complicate. With
the image component, you don't need to worry about it. Once the content of an image is
assigned, it belongs to the image component, and the memory it occupies will be released
automatically after the image component is no long used.

Tip: If you want to display the contents, say PDF, other than image and audio, you could
use the i frame component. Refer to the relevant section for details.

Imagemap

A imagemap component is a special image. It accepts whatever properties an image
component accepts. However, unlike image, if a user clicks on the image, an onClick event
is sent back to the server with the coordinates of the mouse position. In contrast, the
onClick event sent by image doesn't contain the coordinates.

The coordinates of the mouse position are screen pixels counted from the upper-left corner
of the image beginning with (0, 0). It is stored as instance of
org.zkoss.zk.ui.event.MouseEvent. Once the application receives the onClick event, it
could examine the coordinates of the mouse position from the getx and getY methods.

For example, if a user clicks 208 pixels over and 205 pixels down from the upper-left corner
of the image displayed from the following statement.

|<imagemap src="/img/sun.jpg" onClick="alert (event.x + ", " +event.y)"/> |

K Application

& 208, 205

Then, the user gets the result as depicted below.

The application usually uses the coordinates to determine where a user has clicked, and then

ZK: Developer's Guide Page 80 of 211 Potix Corporation

response accordingly.

Area

Instead of processing the coordinates by the application itself, developers could add the
area components as the children of a imagemap component.

<imagemap src="/img/sun.jpg" onClick="alert (event.area)">
<area id="First" coords="0, 0, 100, 100"/>
<area id="Second" shape="circle" coords="200, 200, 100"/>
</imagemap>

Then, the imagemap component will translate the coordinates of the mouse position to a
logical name: the identifier of the area that users has clicked.

For example, if users clicks at (150, 150), then the user gets the result as depicted blow.

N

K Application [x]

& Second

The shape Property

An area component supports three kinds of shapes: circle, polygon and rectangle. The
coordinates of the mouse position are screen pixels counted from the upper-left corner of
the image beginning with (0, 0).

Shape Coordinates / Description

circle coords="x, vy, r"

where x and y define the position of the center of the circle and
r is its radius in pixels.

polygon coords="x1, vyl, x2, y2, x3, y3..."

where each pair of x and y define a vertex of the polygon. At
least thee pairs of coordinates are required to defined a
triangle. The polygon is automatically closed, so it is not
necessary to repeat the first coordinate at the end of the list to

ZK: Developer's Guide Page 81 of 211 Potix Corporation

Shape Coordinates / Description

close the region.

rectangle coords="x1, vyl, x2, y2"

where the first coordinate pair is one corner of the rectangle
and the other pair is the corner diagonally opposite. A rectangle
is just a shortened way of specifying a polygon with four
vertices.

If the coordinates in one area component overlap with another, the first one takes
precedence.

Audio

An audio component is used to play the audio at the browser. Like image, you could use the
src property to specify an URL of an audio resource, or the setContent method to specify a
dynamically generated audio.

Depending on the browser and the audio plugin, developers might be able to control the play
of an audio by the play, stop and pause methods. Currently, Internet Explorer with Media
Player is capable of such controls.

Input Controls 8
A set of input controls are supported in the XUL 1 May, 2006 »
Jan Feb Mar Apr May Jun
component set: textbox, intbox, decimalbox, Jul Aug Sep Oct Mov Dec
Sun Mon Tue Wed Thu Fri Sat
datebox, combobox, and bandbox. They are used 30 1 2 3 4 5 &
. . 7 8 9 10 11 12 13
to let users input different types of data. 14 15 (16 17 18 19 20
21 22 23 24 25 26 27
<zk> 28 23 20 31 1 2z 3
<textbox/>
<datebox/>
</zk>

Tip: combobox and bandbox are special input boxes. They shares the common
properties described here. Their unique features will be discussed later in the
Comboboxes and Bandboxes section.

The type Property

You could specify the type property with password for the textbox components, such
that what user has entered won't be shown.

Username: <textbox/>
Password: <textbox type="password"/>

ZK: Developer's Guide Page 82 of 211 Potix Corporation

The format Property

You could control the format of an input control by the format filed. The default is null.
For datebox, it means yyyy/MM/dd. For intbox and decimalbox, it means no formating at
all.

<datebox format="MM/dd/yyyy"/>
<decimalbox format="#, ##0.##"/>

Like any other properties, you could change the format dynamically, as depicted below.

<datebox id="db"/>
<button label="set MM-dd-yyyy" onClick="db.setFormat ("MM-dd-yyyy")"/>

Mouseless Entry datebox
e Alt+DOWN to pop up the calendar.
* LEFT, RIGHT, UP and DOWN to change the selected day from the calendar.

* ENTER to activate the selection by copying the selected day to the datebox control.

* Alt+UP or ESC to give up the selection and close the calendar.

Constraints

You could specify what value to accept for input controls by use of the constraint
property. It could a combination of no positive, no negative, no zero, no empty, no
future, no past, no today, and a regular expression. The first three constraints are
applicable only to intbox and decimalbox. The constraints of no future, no past, and
no today are applicable only to datebox. The constraint of no empty is applicable to any
type of components. The constraint of regular expressions is applicable only to String-
type input components, such as textbox., combobox and bandbox.

To specify two or more constraints, use comma to separate them as follows.

|<intbox constraint="no negative,no zero"/> |

To specify a regular expression, you could have to use / to enclose the regular expression
as follows.

|<textbox constraint="/.+Q.+\.[a-z]+/"/> |
Notes:

- The above statement is XML, so do not use \\ to specify a backslash. On the other
hand, it is necessary, if writing in Java.

|new Textbox () .setContraint ("/.+@.+\\. [a-z]+/"); |

- It is allowed to mix regular expression with other constraints by separating them
with comma.

You prefer to display an application dependent message instead of default one, you could

ZK: Developer's Guide Page 83 of 211 Potix Corporation

append the constraint with colon and the message you want to display when failed.

<textbox constraint="/.+Q@.+\.[a-z]+/: e-mail address only"/>
<datebox constraint="no empty, no future: now or never"/>

Notes:
« The error message, if specified, must be the last element and start with colon.

« To support multilingual, you could use the | function as depicted in the
Internationalization chapter.

|<textbox constraint="/.+@.+\.[a-z]+/: ${c:1l('err.email.required"')}"/> |

Customized Constraints

If you want more sophisticated constraint, you could specify an object which implements
the org.zkoss.zul.Constraint interface.

<zk>
<zscript><![CDATA[
Constraint ctt = new Constraint () {

public void validate (Component comp, Object value) throws WrongValueException {
if (((Integer)value).intValue() < 100)
throw new WrongValueException (comp, "At least 100 must be specified");

}

public String getValidationScript() {return null;}
public String getErrorMessage () {return null;}
boolean isClientComplete () {return false;}

}

]1></zscript>

<intbox constraint="${ctt}"/>
<window height="400px"/>
</zk>

You could implement your constraint into a Java class, say my.Emailvalidator, then:

<?taglib uri="/WEB-INF/tld/web/core.dsp.tld" prefix="c"?>
<textbox constraint="${c:new('my.EmailValidator"')}"/>

org.zkoss.zk.ui.wrongvalueException

In the above example, we use org.zkoss.zk.ui.WrongValueException to denote an
error. As depicted, you have to specify the first argument with the component that causes
the error, and then the second argument with the error message.

You could throw this exception anytime, such as when an onChange event is received as

follows.
try again
i} Not a good answer! |

<textbox>
<attribute name="onChange">

if (!self.value.equals ("good")) {

ZK: Developer's Guide Page 84 of 211 Potix Corporation

self.value = "try again";
throw new WrongValueException(self, "Not a good answer!");

}
</attribute>
</textbox>

The onChange Event

An input control notifies the application with the onChange event if its content is changed
by the user.

Notice that, when the onChange's event listener is invoked, the value has been set. Thus,
it is too late if you want to reject illegal value in the onChange's event listener, unless you
restore the value properly. Rather, it is recommended to use a constraint as described in
the Customized Constraints section.

The onChanging event

An input control also notifies the application with the onChanging event, when user is
changing the content.

Notice that, when the onChanging's listener is invoked, the value is not set yet. In other
worlds, the value property still remain in the old value. To retrieve what the user is
entering, you have to access the value property of the event as follows.

<grid>
<rows>
<row>The onChanging textbox:
<textbox onChanging="copy.value = event.value"/></row>
<row>Instant copy:
<textbox id="copy" readonly="true"/></row>
</rows>
</grid>

It is too early if you want to reject illegal value in the onChanging's event listener,
because user may not complete the change yet. Rather, it is recommended to use a
constraint as described in the Customized Constraints section.

4 May, 2006 3 |

Calendar Jan Feb Mar Apr May Jun

Jul Aug Sep Oct Mov Dec

A calendar displays a 'flat' calendar and allows user to | Sun Mon Tue Wed Thu Fri Sat

30 1 2 3 4 5 6

select a day from it. 7 8 3 10 11 12 13

i4 15 16 17 18 19 20

21 22 23 24 25 26 27]
28 25 30 321 i 2 3

<hbox>
<calendar id="cal" onChange="in.value = cal.value"/>
<datebox id="in" onChange="cal.value = in.value"/>
</hbox>

ZK: Developer's Guide Page 85 of 211 Potix Corporation

The value Property and the onChange Event

Like input controls, calendar supports the value property to let developers set and
retrieve the selected day. In addition, developers could listen to the onChange event to
process it immediately, if necessary.

The compact Property

A calendar supports two different layouts and you can control it by use of the compact

r rty.
property 4 ¥ May, 2006 »)
Sun Mon Tue Wed Thu Fri Sat
30 1 z 3 4 3 &
7 g El i0 11 1z 13
The default value depends on the current Locale. 14 15 16 17 18 15 20

21 22 23 24 253 Ze 27
28 29 30 31 i 2 3

|<calendar compact="true"/>

Progressmeter

A progress meter is a bar that indicates how much of a task has been completed. The value
property must be in the range between 0 and 100.

| <progressmeter value="10"/> = |

Slider

A slider is used to let user specifying a value by scrolling.

|<slider id="slider" onScroll="Audio.setVolume (slider.curpos)"/> g

A slider accepts a range of value starting from 0 to 100. You could change the maximal
allowed value by the maxpos property.

Timer

A timer is an invisible component used to send the onTimer event to the server at the
specified time or period. You could control a timer by the start and stop methods.

<window title="Timer demo" border="normal"> Mon Dec 12 21:17:38 CST 2005
<label id="now"/>
<timer id="timer" delay="1000" repeats="true"

[Stops timer | [Starts timer |

onTimer="now.setValue (new Date () .toString())"/>
<separator bar="true"/>
<button label="Stops timer" onClick="timer.stop()"/>
<button label="Starts timer" onClick="timer.start()"/>
</window>

Paging

A paging component is used to separate long content into multiple pages. For example,
assume that you have 100 items and prefer to show 20 items at a time, then you can use

ZK: Developer's Guide Page 86 of 211 Potix Corporation

the paging components as follows.

|<paging totalSize="100" pageSize="20"/>

Prev 123 4 5 Next |

L5}

Then, when an user clicks on the hyperlinks, the onPaging event is sent with an instance of

org.zkoss.zul.event.PagingEvent to the paging component. To decide which portion of
your 100 items are visible, you shall add a listener to the paging component.

<paging id="paging"/>
<zscript>

List result = new SearchEngine () .find("ZK");
//assume SearchEngine.find() will return a list of items.

paging.setTotalSize (result.size());

paging.addEventListener ("onPaging",
public boolean isAsap() {

return true;

new EventListener () {

}
public void onEvent (Event event) {

int pgno = event.getPaginal () .getActivePage () ;

int ofs = pgno * event.getPaginal () .getPageSize();

new Viewer () .redraw(result, ofs, ofs + event.getPaginal () .getPageSize() - 1);

//assume redraw (List result, int b, int e) will display
//from the b-th item to the e-th item

1)

</zscript>

Paging with List Boxes and Grids

The listbox and grid component support the paging intrinsically, so you don't need to
specify a paging component explicitly as above, unless you want to have different visual
layout or to control multiple 1istbox and grid with one paging component.

Refer to the Grids section for more details.

Windows

A window is, like HTML DIV tag, used to group components. Unlike other components, a window
has the following characteristics.

A window is an owner of an ID space. Any component contained in a window, including
itself, could be found by use of the getFellow method, if it is assigned with an identifier.

A window could be overlapped, popup, and embedded.

+ A window could be a modal dialog.

ZK: Developer's Guide Page 87 of 211 Potix Corporation

Titles and Captions

A window might have a title, a caption and a border. The title is specified by the title
property. The caption is specified by declaring a child component called caption. All children
of the caption component will appear to the right side of the title.

<window title="Demo" border="normal" width="350px">
<caption>
<toolbarbutton label="More"/>
<toolbarbutton label="Help"/>
</caption>
<toolbar>
<toolbarbutton label="Save"/>
<toolbarbutton label="Cancel"/>
</toolbar>
What is your favorite framework?

<radiogroup>
<radio label="ZK"/>
<radio label="JSF"/> Save Cancel
</radiogroup> What is your favorite framework? Dzk CISF
</window>

You could also specify a label and an image to a caption, and then the appearance is as
follows.

<window id="win" title="Main" border="normal" width="200px">
<caption image="/img/coffee.gif" label="Hi there!"/>
<checkbox label="Hello, World!"/>

</window>

1#!Nmm—lﬁthme!
.:

[IHello, world!

The closable Property

By setting the closable property to true, a close button is shown for the window, such that
user could close the window by clicking the button. Once user clicks on the close button, an
onClose event is sent to the window. It is processed by the onClose method of Window.
Then, onClose, by default, detaches the window itself.

You can override it to do whatever you want. Or, you registered a listener to change the
default behavior. For example, you might choose to hide rather than close.

<window closable="true" title="Detach on Close" border="normal" width="200px"
onClose="self.visible = false; event.stopPropagation() ;">
In this example, this window hides itself when the close button is clicked.

</window> Detach on Close H

.) In this example, this window
Notice that event.stopPropagation () must be called to prevent ... " o 4o close

Window.onClose() being called. button is clicked.

ZK: Developer's Guide Page 88 of 211 Potix Corporation

Tip: If the window is a popup, the onOpen event will be sent to the window with

open=false, when the popup is closed due to user's clicking outside of the window, or
pressing ESC.

It is a bit confusing but onClose is sent to ask the server to detach or to hide the
window. By default, the window is detached and the application can do whatever it wants
as described above.

On the other hand, onOpen is a notification. It is sent to notify the application that the
client has hidden the window. The application cannot prevent it from be hidden, or
change the behavior to be detached.

The sizable Property

If you allow users to resize the window, you can specify true to the sizable property as
follows. Once allowed, users can resize the window by dragging the borders.

<window id="win" title="Sizable Window" border="normal" width="200px" sizable="true">
This is a sizable window.
<button label="Change Sizable" onClick="win.sizable = !win.sizable"/>

</window>

The onsize Event

Once an user resizes the window, the onsize event is sent with an instance of
org.zkoss.zul.event.SizeEvent. Notice that the window is resized before the onSize
event is sent. In other word, the event serves as a notification that you generally ignore.
Of course, you can do whatever you want in the event listener.

Note: If the user drags the upper or left border, the onMove event is also sent since the
position is changed, too.

The Style Class (sclass)

ZK supports four different style classes for window: embedded, overlapped, popup and
wndcyan. Of course, you can add more if you want.

By default, the sclass property is the same as the window mode, so windows in different
modes appear differently. To change the appearance, simply assign a value to the sclass
property as illustrated in the following example.

<hbox>
<window title="Embedded Style" border="normal" width="200px">
Hello, Embedded!
</window>
<window title="Cyan Style" sclass="wndcyan" border="normal" width="200px">
Hello, Cyan!
</window>

ZK: Developer's Guide Page 89 of 211 Potix Corporation

<window title="Popup Style" sclass="popup" border="normal" width="200px">
Hello, Popup!
</window>
<window title="Modal Style" sclass="modal" border="normal" width="200px">
Hello, Modal!
</window>
</hbox>

Hello, Embedded! Hello, Cyan! Hello, Popup! Hello, Modal!

The contentStyle Property

You can customize the look and feel of the content block of the window by specifying the
contentStyle property.

contentStyle="background:yellow">

Hello, World!

</window>

<window title="My Window" border="normal" width="200px"
Hello, World!

Scrollable Window

A typical use of contentType is to make a window scrollable as follows.

<window id="win" title="Hi" width="150px" height="100px"
contentStyle="overflow:auto" border="normal">

This is a long line to spead over several lines, and more content to display.
Finally, the scrollbar becomes visible.

This is another line. _

—_ . ’
</window> This is a long line
to spead over
several lines, and
more content to

v

Borders

The border property specifies whether to display a border for window. The default style
sheets support only normal and none. The default value is none.

Of course, you can provide additional style class. For example,

<zk>
<style>
div.wc-embedded-dash {
padding: 2px; border: 3px dashed #aab;
}
</style>

<window title="My Window" border="dash" width="200px">
Hello, World!

</window>

Hello, Waorld!
</zk>

where wc-embedded-double defines the style of the inner box of the window. The style class

ZK: Developer's Guide Page 90 of 211 Potix Corporation

is named by concatenating wc*, the sclass property and the border property together and
separating them with dash. In this example, sclass is embedded since it is an embedded
window and no explicit sclass is assigned (so the default sclass is used).

Overlapped, Popup, Modal and Embedded

A window could be in one of four different modes: overlapped, popup, modal and embedded.
By default, it is in the embedded mode. You could change the mode by use of the
doOverlapped, doPopup, doModal and doEmbedded methods, depicted as follows.

<zk>
<window id="win" title="Hi!" border="normal" width="200px">
<caption>
<toolbarbutton label="Close" onClick="win.setVisible (false)"/>
</caption>
<checkbox label="Hello, Wolrd!"/>
</window>
<button label="Overlap" onClick="win.doOverlapped();"/>
<button label="Popup" onClick="win.doPopup();"/>
<button label="Modal" onClick="win.doModal ();"/>
<button label="Embed" onClick="win.doEmbedded();"/>
</zk>
Embedded

An embedded window is placed inline with other components. In this mode, you cannot
change its position, since the position is decided by the browser.

Overlapped

An overlapped window is overlapped with other components, such that users could drag it
around and developer could set its position by the setLeft and setTop methods.

In addition to doOverlapped, you can use the mode property as follows.

<window title="My Overlapped" width="300px" mode="overlapped">
</window>

Popup

A popup window is similar to overlapped windows, except it is automatically closed when
user clicks on any component other than the popup window itself or any of its
descendants. As its name suggested, it is designed to implement popup windows.

33 wc for window content, while wt for window title.

ZK: Developer's Guide Page 91 of 211 Potix Corporation

Modal

A modal window (aka., a modal dialog) is similar to overlapped windows, except it
suspends the event processing thread until one of the endModal, doEmbedded,
doOverlapped and doPopup methods is called.

In addition to suspending the event processing thread, it disables components not
belonging to the modal window.

A modal window is positioned automatically at the center of the browser, so you cannot
control its position.

Modal Windows and Event Listeners

Unlike other modes, you can only put a window into the modal mode in an event listener.
In other words, you can invoke doModal () Or setMode ("modal") in an event listener.

<zk>
<window id="wnd" title="My Modal" visible="false" width="300px">
<button label="close" onClick="wnd.visible = false"/>
</window>
<button label="do it" onClick="wnd.doModal ()" />
</zk>

On the other hand, the following is wrong if it executes in the Component Creation
Phase*.

//tl.zul
<window title="My Modal" width="300px" closable="true" mode="modal">
</window>

It will cause the following result® if you browse it directly.

34 Refer to the Component Lifecycle chapter.
35 Assume Tomcat is used.

ZK: Developer's Guide Page 92 of 211 Potix Corporation

HTTP Status 500 -

S22 Exception report

The server encountered an internal error () that prevented it from fulfiling this request.

exception

com.potix.zk.ul.WrongValueException: doModal() and setMode ("modal™) can only be called in an event listener, not in page loading
com.potix.zul.html.Window.doModal (Window.java:249)
sun.reflect.NativeMethodAccessorImpl.invokel (Native Method)
sun.reflect.NativeMethod&AccessorImpl.invoke (Unknown Source)
sun.reflect.DelegatingMethodhAccessorImpl. invoke (Unknown Source)
java.lang.reflect.Method. invoke (Unknown Source)
bsh.Reflect.invokeMethod (Unknown Source)
bsh.Reflect.invokeObjectMethod (Unknown Source)
bsh.Name.invokeMethod (Unknown Source)
bsh.BSHMethodInvocation.eval (Unknown Source)
bsh.BSHPrimaryExpression.eval (Unknown Source)
bsh.BSHPrimaryExpression.eval (Unknown Source)
bsh.Interpreter.eval (Unknown Source)
bsh.Interpreter.eval (Unknown Source)
com.potix.zk.ui.impl.bsh.BshInterpreter.interpret (BshInterpreter.java:108)
com.potix.zk.ui.impl.PageImpl.interpret (PageImpl.java:524)
com.potix.zk.ui.impl.UiEngineImpl.execCreate (UiEngineImpl.java:338)
com.potix.zk.ui.impl.UiEngineImpl .execCreateChild (UiEngineImpl.java:366)
com.potix.zk.ui.impl.UiEngineImpl.execCreate (UiEBngineImpl.java:318)
com.potix.zk.ui.impl.UiEngineImpl.execNewPage (UiEngineImpl.java:243)
com.potix.zk.ui.http.DHtmlLayoutServlet.process (DHtmlLayoutServliet.java:149)
com.potix.zk.ui.http.DHtmlLavoutServlet.doGet (DHtmlLavoutServliet.java:105)
javax.servlet.http.HttpServliet.service (HttpServliet.java:689)
javax.servlet.http.HttpServlet.service (HttpServlet.java:802)

[T The full stack trace of the root cause is avaiable in the Apache Tomcat/5.5.12 logs.

Apache Tomcat/5.5.12

The following codes will cause the same result.

//t2.zul
<window title="My Modal" width="300px" closable="true">
<zscript>
self.doModal () ;
</zscript>
</window>

If you need to create a modal window in page loading, you can post the onModal event as
follows.

//t3.zul

<window title="My Modal" width="300px" closable="true">
<zscript>
Events.postEvent ("onModal"™, self, null);
</zscript>

</window>

Note: the following codes execute correctly even if t1.zul sets the window's mode to
modal directly (as shown above). Why? It executes in an event listener (for onClick).

<button label="do it">
<attribute name="onClick">
Executions.createComponents ("tl.zul", null, null);
//it loads tl.zul in this event listener for onClick
</attribute>
</button>

ZK: Developer's Guide Page 93 of 211 Potix Corporation

Common Dialogs

The XUL component set supports the following common dialogs to simplify some common
tasks.

The org.zkoss.zul .Messagebox Class

A set of utilities to show message boxes. It is typically used to alert user when an error
occurs, or to prompt user for an decision.

if (Messagebox.show("Remove this file?", "Remove?", Messagebox.YES | Messagebox.NO,
Messagebox.QUESTION) == Messagebox.YES) {
...//remove the file

Since it is common to alert user for an error, a global function called alert is added for
zscript. The alert function is a shortcut of the show method in the Messagebox class. In
other words, The following two statements are equivalent.

alert ("Wrong") ;
Messagebox.show ("Wrong") ;

Notice that Messagebox is @ modal window so it shares the same constraint: executable
only in an event listener. Thus, the following codes will fail. Refer to the Modal Windows
and Event Listeners section above for more descriptions.

<window title="Messagebox not allowed in paging loading">
<zscript>
//failed since show cannot be called in paging loading
if (Messagebox.show("Redirect?", "Redirect?",
Messagebox.YES | Messagebox.NO, Messagebox.QUESTION) == Messagebox.YES)
Executions.sendRedirect ("another.zul");
</zscript>
</window>

The org.zkoss.zul.Fileupload Class

It contains utilities to prompt a user for uploading a file from the browser. The get
method will show a dialog that prompts the user at the browser for specifying a file for
uploading. It won't return until user has uploaded a file or presses the cancel button.

<window title="Fileupload Demo" border="normal">
<image id="image"/>
<button label="Upload">
<attribute name="onClick">{
Object media = Fileupload.get();
if (media instanceof org.zkoss.image.Image)
image.setContent (media) ;
else 1if (media != null)
Messagebox.show ("Not an image: "+media, "Error",

Messagebox.0OK, Messagebox.ERROR) ;

ZK: Developer's Guide Page 94 of 211 Potix Corporation

}</attribute>
</button>
</window>

Fileupload Demo

File Upload

Specify a file located in your local system

| (=)

Upload Cancel ‘

Upload Multiple Files at Once

If you allow users to upload multiple files at once, you can specify the maximal allowed
number as follows.

<window title="fileupload demo" border="normal">
<button label="Upload">
<attribute name="onClick"><! [CDATAT[{
Object media = Fileupload.get (5);
if (media != null)
for (int j = 0; j < media.length; ++3j) {
if (media[]j] instanceof org.zkoss.image.Image) {
Image image = new Image();
image.setContent (medialj]);
image.setParent (pics) ;
} else if (medial[j] != null) {
Messagebox.show ("Not an image: "+media[j], "Error",
Messagebox.0OK, Messagebox.ERROR) ;

}) File Upload

) Specify a file located in your local system
}11></attribute>
</button> 1 Cthomeomyehipr ekl ‘alidere | Browse... |
<vbox id="pics"/> 2 (Chomeornyehpria 'wedere [(Browse.. |
</window> 3| |[Bmm$&.]
4| ”Bmwwm]
5| “ BKNS&“]
The Box Model [Upload | [Cancel | |

Components: vbox, hbox and box.

The box model of XUL is used to divide a portion of the display into a series of boxes. Components
inside of a box will orient themselves horizontally or vertically. By combining a series of boxes and
separators, you can control the layout of the visual representation.

A box can lay out its children in one of two orientations, either horizontally or vertically. A

ZK: Developer's Guide Page 95 of 211 Potix Corporation

horizontal box lines up its components horizontally and a vertical box orients its components
vertically. You can think of a box as one row or one column from an HTML table.

Some examples are shown as follows.

<zk>

<button label="Button 1"/>

<button label="Button 2"/> [—— H —
</vbox>
<hbox>
<button label="Button 3"/>
<button label="Button 4"/>
</hbox>
</zk>

The hbox component is used to create a horizontally oriented box. Each component placed in the
hbox will be placed horizontally in a row. The vbox component is used to create a vertically
oriented box. Added components will be placed underneath each other in a column.

There is also a generic box component which defaults to horizontal orientation, meaning that it is
equivalent to the hbox. However, you can use the orient property to control the orientation of the
box. You can set this property to the value horizontal to create a horizontal box and vertical to
create a vertical box.

Thus, the two lines below are equivalent:

<vbox>
<box orient="vertical">

You can add as many components as you want inside a box, including other boxes. In the case of
a horizontal box, each additional component will be placed to the right of the previous one. The
components will not wrap at all so the more components you add, the wider the window will be.
Similarly, each element added to a vertical box will be placed underneath the previous one.

The spacing Property

You could control the spacing among children of the box control. For example, the following
example puts 5em at both the upper margin and the lower margin. Notice: the total space
between two input fields is 10em.

<vbox spacing="5em">
<textbox/>
<datebox/>
</vbox>

Another example illustrated an interesting layout by use of zero spacing.

<window title="Box Layout Demo" border="normal">

<hbox spacing="0">

ZK: Developer's Guide Page 96 of 211 Potix Corporation

<window border="normal">0</window> Box Layout Demo

<vbox spacing="0"> 0/1122
<hbox spacing="0"> 4
<window border="normal">1</window> 5|7\89
<window border="normal">2</window> &

<vbox spacing="0">
<window border="normal">3</window>
<window border="normal">4</window>
</vbox>
</hbox>
<hbox spacing="0">
<vbox spacing="0">
<window border="normal">5</window>
<window border="normal">6</window>
</vbox>
<window border="normal">7</window>
<window border="normal">8</window>
<window border="normal">9</window>
</hbox>
</vbox>
</hbox>
</window>

The widths and heights Properties

You can specify the width for each cell of hbox with the widths property as follows.

<hbox width="100%" widths="10%,20%,30%,40%">
<label value="10%"/>
<label value="20%"/>
<label value="30%"/>
<label value="40%"/>
</hbox>

The value is a list of widths separated by comma. If any value is missed, no width is
generated for the corresponding cell and the real width is up to the browser.

Similarly, you can specify the heights for each cell of vbox with the heights property.
Actually, these two properties are the same since the orientation of a box can be horizontal
or vertical depending on the orient property.

Splitters
Components: splitter.

There may be times when you want to have two sections of a window where the user can
resize the sections. This feature is accomplished by using a component called a splitter. It
creates a skinny bar between two sections which allows either side to be resized.

A splitter must be put inside a box. When a splitter is placed inside a horizontal box (hbox),
it will allow resizing horizontally. When a splitter is placed inside a vertical box (vbox), it will

ZK: Developer's Guide Page 97 of 211 Potix Corporation

http://xulplanet.com/references/elemref/ref_splitter.html

allow resizing vertically. For example,

collapsed, you can listen to

Column 1-1: The left-top box. To know whether a splitter is

the onOpen event.

= 1

I

by calling setOpen method.

Column 1-2: You can enforce to open or collapse programmingL

Column 2: Whether a splitter allows users to open or
collapse depending on the collapse attribue.

And, the codes are as follows.

</vbox>

depending on the
</hbox>

<hbox spacing="0" style="border:
<vbox height="200px">

Column 1-1: The left-top box.

is collapsed, you can listen to the onOpen event.

<splitter collapse="after"/>

by calling setOpen method.

<splitter collapse="before"/>
Column 2: Whether a splitter allows users to open or collapse

collapse attribue.

The collapse Property

lpx solid grey" width="100%">

To know whether a splitter

Column 1-2: You can enforce to open or collapse programming

It specifies which side of the splitter is collapsed when its grippy (aka., button) is clicked.
If this property is not specified, the splitter will not cause a collapse (and the grippy won't

appear).

Allowed values and their meaning are as follows.

Value Description
none No collpasing occurs.
before When the grippy is clicked, the element immediately before the splitter
in the same parent is collapsed so that its width or height is 0.
after When the grippy is clicked, the element immediately after the splitter
in the same parent is collapsed so that its width or height is 0.

The open Property

To know whether a splitter is collapsed, you can check the value of the open property
(i.e., the isOpen method). To open or collapse programmingly, you can set the value of
the open property (i.e., the setOpen method).

ZK: Developer's Guide

Page 98 of 211

Potix Corporation

The onOpen Event

When a splitter is collapsed or opened by a user, the onOpen event is sent to the
application.

Tab Boxes

Components: tabbox, tabs, tab, tabpanels and tabpanel.

A tab box allows developers to separate a large number of components into several groups, and
show one group each time, such that the user interface won't be too complicate to read. There is
only one group (aka., a panel) is visible at the same time. Once the tab of an invisible group is
clicked, it becomes visible and the previous visible group becomes invisible.

The generic syntax of tab boxes is as follows.

<tabbox>

<tabs> First (Second |
<tab label="First"/> The first panel.

<tab label="Second"/>
</tabs>
<tabpanels>

<tabpanel>The first panel.</tabpanel>
<tabpanel>The second panel</tabpanel>
</tabpanels>
</tabbox>

+ tabbox: The outer box that contains the tabs and tab panels.
+ tabs: The container for the tabs, i.e., a collection of tab components.

+ tab: A specific tab. Clicking on the tab brings the tab panel to the front. You could put a
label and an image on it.

+ tabpanels: The container for the tab panels, i.e., a collection of tabpanel components.

+ tabpanel: The body of a single tab panel. You would place the content for a group of
components within a tab panel. The first tabpanel corresponds to the first tab, the second
tabpanel corresponds to the second tab and so on.

The currently selected tab component is given an additional selected property which is set to
true. This is used to give the currently selected tab a different appearance so that it will look
selected. Only one tab will have a true value for this property at a time.

There are two way to change the selected tab by Java codes. They are equivalent as shown below.
tabl.setSelected(true);
tabbox.setSelectedTab (tabl) ;

Of course, you can assign true to the selected property directly.

ZK: Developer's Guide Page 99 of 211 Potix Corporation

|<tab label="My Tab" selected="true"/>

If none of tabs are selected, the first one is selected automatically.

Nested Tab Boxes

A tab panel could contain anything including another tab boxes.

<tabbox>
<tabs>
<tab label="First"/>
<tab label="Second"/>
</tabs>
<tabpanels>
<tabpanel>
The first panel.
<tabbox>
<tabs>
<tab label="Nested 1"/>
<tab label="Nested 2"/>
<tab label="Nested 3"/>
</tabs>
<tabpanels>
<tabpanel>The first nested panel</tabpanel>
<tabpanel>The second nested panel</tabpanel>
<tabpanel>The third nested panel</tabpanel>
</tabpanels>
</tabbox>
</tabpanel>
<tabpanel>The second panel</tabpanel>
</tabpanels>
</tabbox>

The Accordion Tab Boxes

i

First § Second

The first panel.

r .
Mested 2

Hested 1

The first nested panel

Tab boxes supports two molds: default and accordion. The effect of the accordion mold is

as follows.

<tabbox mold="accordion">
<tabs>
<tab label="First"/>
<tab label="Second"/>
</tabs>
<tabpanels>
<tabpanel>The first panel.</tabpanel>
<tabpanel>The second panel</tabpanel>
</tabpanels>
</tabbox>

ZK: Developer's Guide Page 100 of 211

’Hﬁ 1
The first panel.

[
| S=cond]

Potix Corporation

The orient Property

Developers can control whether the tabs are located by use of the orient property. By
default, it is horizontal. You can change it to vertical, and the effect is as follows.

<tabbox width="400px" orient="vertical">

<tabs> Ez This is panel A
<tab label="A"/>

<tab label="B"/>

<tab label="C"/> Wy

<tab label="D"/>

<tab label="E"/>

</tabs> S

<tabpanels>

m

<tabpanel>This is panel A</tabpanel>
<tabpanel>This is panel B</tabpanel>
<tabpanel>This is panel C</tabpanel>
<tabpanel>This is panel D</tabpanel>
<tabpanel>This is panel E</tabpanel>
</tabpanels>
</tabbox>

The closable Property

By setting the closable property to true, a close button is shown for the tab, such that user
could close the tab and the corresponding tab panel by clicking the button. Once user clicks
on the close button, an onClose event is sent to the tab. It is processed by the onClose
method of Tab. Then, onClose, by default, detaches the tab itself and the corresponding tab
panel.

See also window's closable property.

Create-on-Select for Tab Panels

As illustrated below, you could listen to the onselect event, and then fulfill the content of
the panel when it is selected.

<tabbox id="tabbox" width="400" onSelect="load ()" mold="accordion">
<tabs>
<tab label="Preload"/>
<tab label="OnDemand"/>
</tabs>
<tabpanels>
<tabpanel>
This panel is pre-loaded.
</tabpanel>
<tabpanel>
</tabpanel>
</tabpanels>
<zscript><![CDATA[

ZK: Developer's Guide Page 101 of 211 Potix Corporation

void load() {
Tabpanel panel = tabbox.getSelectedPanel ()
if (panel != null && panel.getChildren() .isEmpty())
new Label ("Second panel is loaded") .setParent (panel);
}
11></zscript>
</tabbox>

Grids

Components: grid, columns, column, rows and row.

A grid contains components that are aligned in rows like tables. Inside a grid, you declare two
things, the columns, that define the header and column attributes, and the rows, that provide the
content.

To declare a set of rows, use the rows component, which should be a child element of grid. Inside
that you should add row components, which are used for each row. Inside the row element, you
should place the content that you want inside that row. Each child is a column of the specific row.

Similarly, the columns are declared with the columns component, which should be placed as a
child element of the grid. Unlike row is used to hold the content of each row, column declares the
common attributes of each column, such as the width and alignment, and and optional headers,
i.e., label and/or image.

<grid>

Type Content
<columns>

File:

<column 1 1="T "/>
colu abe ype / Type: Tarra, Files_ ¢ ava) -

<column label="Content"/>
</columns>
<rows>
<row>
<label value="File:"/>
<textbox width="99%"/>
</row>
<row>
<label value="Type:"/>
<hbox>
<listbox rows="1" mold="select">
<listitem label="Java Files, (*.java)"/>
<listitem label="All Files, (*.*)"/>
</listbox>
<pbutton label="Browse..."/>
</hbox>
</row>
</rows>
</grid>

ZK: Developer's Guide Page 102 of 211 Potix Corporation

Scrollable Grid

A grid could be scrollable if you specify |Head1
the height property and there is not

Faster | »
enough space to show all data.
[option 1
<grid width="500px" height="130px">
<columns> ¥ option 1

<column label="Head 1"/>
<column label="Head 2" align="center"/>
<column label="Head 3" align="right"/>
</columns>
<rows>
<row>
<listbox mold="select">
<listitem label="Faster"/>
<listitem label="Fast"/>
<listitem label="Average"/>
</listbox>
<datebox/>
<textbox rows="2"/>
</row>
<row>

<checkbox label="Option 2"/>
<radiogroup>
<radio label="Apple"/>

<radio label="Lemon"/>
</radiogroup>
</row>
<row>

<checkbox label="Option 2"/>
<radiogroup orient="vertical">
<radio label="Apple"/>

<radio label="Lemon"/>
</radiogroup>
</row>
</rows>
</grid>

Sizable Columns

<radio label="Orange" checked="true"/>

<radio label="Orange" checked="true"/>

Head 2 Head 3
A
)
[Joption 2) Apple @ orange) Lemon
O Apple
[Joption 2 ® orange|¥

<checkbox checked="true" label="Option 1"/>

<checkbox checked="true" label="Option 1"/>

If you allow users to resize the widths of columns, you can specify true to the sizable
property of columns as follows. Once allowed, users can resize the widths of columns by

dragging the border between adjacent column components.

<window>
<grid>
<columns id="cs" sizable="true">

ZK: Developer's Guide Page 103 of 211

Potix Corporation

<column label="AA"/>
<column label="BBR"/>
<column label="CC"/>
</columns>
<rows>
<row>
<label value="AAQ1"/>
<label value="BBO1"/>
<label value="CCO1"/>
</row>
<row>
<label value="AA01"/>
<label value="BBO01l"/>
<label value="CCO01"/>
</row>
<row>
<label value="AAO01l"/>
<label value="BBO1"/>
<label value="CCO1"/>
</row>
</rows>
</grid>
<checkbox label="sizeable" checked="true" onCheck="cs.sizeable = self.checked"/>
</window>

The onColsize Event

Once an user resizes the widths, the onColsize event is sent with an instance of
org.zkoss.zul.event.ColSizeEvent. Notice that the column's width is adjusted before
the onColsize event is sent. In other word, the event serves as a notification that you
can ignore. Of course, you can do whatever you want in the event listener.

Grids with Paging

There are two ways to handle long content in a grid: scrolling and paging. The scrolling is
enabled by specifying the height property as discussed in the previous section. The paging
is enabled by specifying paging to the mold property. Once paging is enable, the grid
separates the content into several pages and displays one page at a time as depicted below.

<grid width="300px" mold="paging" pageSize="4"> Left Right
<columns> Item 1.1 Item 1.2
<column label="Left"/> Item 2.1 Item 2.2
<column label="Right"/> Item 3.1 Item 3.2
</columns> Item %% - Item 4.2
12 MNext[1/7]
<rows>
<row>
<label value="Item 1.1"/><label value="Item 1.2"/>
</row>
<row>
<label value="Item 2.1"/><label value="Item 2.2"/>

ZK: Developer's Guide Page 104 of 211 Potix Corporation

</row>
<row>
<label value="Item 3.1"/><label value="Item 3.2"/>
</row>
<row>
<label value="Item 4.1"/><label value="Item 4.2"/>
</row>
<row>
<label value="Item 5.1"/><label value="Item 5.2"/>
</row>
<row>
<label value="Item 6.1"/><label value="Item 6.2"/>
</row>
<row>
<label value="Item 7.1"/><label value="Item 7.2"/>
</row>
</rows>
</grid>

Once the paging mold is set, the grid creates an instance of the paging component as the
child of the grid. It then takes care of paging for the grid it belongs to.

The pageSize Property
Once setting the paging mold, you can specify how many rows are visible at a time (i.e.,
the page size) by use of the pageSize property. By default, it is 20.

The paginal Property

If you prefer to put the paging component at different location or you want to control two
or more grid with the same paging component, you can assign the paginal property
explicitly. Note: if it is not set explicitly, it is the same as the paging property.

Prav 12
Left Right Left Right
Item 5.1 Item 5.2 Item E.1 Item E.2
Item 6.1 Item 6.2 Item F.1 Item F.2
Item 7.1 Item 7.2

<vbox>

<paging id="pg" pageSize="4"/>

<hbox>

<grid width="300px" mold="paging" paginal="${pg}">

<columns>

<column label="Left"/><column label="Right"/>
</columns>
<rows>

<row>

<label value="Item 1.1"/><label value="Item 1.2"/>
</row>
<row>

ZK: Developer's Guide Page 105 of 211 Potix Corporation

<label
</row>
<row>
<label
</row>
<row>
<label
</row>
<row>
<label
</row>
<row>
<label
</row>
<row>
<label
</row>
</rows>

</grid>
<grid width="300px" mold="paging" paginal="${pg}">

<columns>

value="Item

value="Item

value="Item

value="Item

value="Item

value="Item

2.1"/><label

3.1"/><label

4.1"/><label

5.1"/><label

6.1"/><label

7.1"/><label

value="Item

value="Item

value="Item

value="Item

value="Item

value="Item

<column label="Left"/><column label="Right"/>

</columns>
<rows>
<row>
<label
</row>
<row>
<label
</row>
<row>
<label
</row>
<row>
<label
</row>
<row>
<label
</row>
<row>
<label
</row>
</rows>

value="Item

value="Item

value="Item

value="Item

value="Item

value="Item

A.1"/><label

B.1"/><label

C.1"/><label

D.1"/><label

E.1"/><label

F.1"/><label

value="Item

value="Item

value="Item

value="Item

value="Item

value="Item

2" />

2"/ >

2"/ >

2"/ >

2"/ >

2"/ >

2"/ >

2"/ >

2"/ >

2"/ >

2"/ >

2"/ >

</grid>
</hbox>
</vbox>

The paging Property

It is a readonly property representing the child paging component that is created
automatically to handling paging. It is null if you assign an external paging by the
paginal property. You rarely need to access this property. Rather, use the paginal

ZK: Developer's Guide Page 106 of 211 Potix Corporation

property.

The onPaging Event and Method

Once an user clicks the page number of the paging component, an onPaging event is
sent the grid. It is then processed by the onPaging method. By default, the method
invalidates, i.e., redraws, the content of rows.

If you want to implement "create-on-demand" feature, you can add a event listener to the
grid for the onPaging event.

Igrid.addEventListener(org.zkoss.zul.event.ZulEvents.ONiPAGING, new MyListener()); |

Sorting

Grids support the sorting of rows directly. To enable the ascending order for a particular
column, you assign a java.util.Comparator instance to the sortAscending property of the
column. Similarly, you assign a comparator to the sortbDescending property to enable the
descending order.

As illustrated below, you first implement a comparator that compares any two rows of the
grid, and then assign its instances to the sortAscending and sortDescending properties.
Notice: the compare method is called with two org.zkoss.zul.Row instance.

<zk>
<zscript>
class MyRowComparator implements Comparator f{
public MyRowComparator (boolean ascending) {
}
public int compare (Object ol, Object 02) {
Row rl = (Row)ol, r2 = (Row)o2;
}
}
Comparator asc = new MyRowComparator (true);
Comparator dsc = new MyRowComparator (false);
</zscript>
<grid>
<columns>
<column sortAscending="${asc}" sortDescending="${dsc}"/>

The sortDirection Property

The sortDirection property controls whether to show an icon at the client to indicate the
order of a particular column. If rows are sorted before adding to the grid, you shall set
this property explicitly.

ZK: Developer's Guide Page 107 of 211 Potix Corporation

’<column sortDirection="ascending"/>

Then, it is maintained automatically by grids as long as you assign the comparators to the
corresponding column.

The onSort Event

When you assign at least one comparator to a column, an onSort event is sent to the
server if user clicks on it. The column component implements a listener to automatically
sort rows based on the assigned comparator.

If you prefer to handle it manually, you can add your own listener to the column for the
onSort event. To prevent the default listener to invoke the sort method, you have to
call the stopPropagation method against the event being received. Alternatively, you
can override the sort method, see below.

The sort Method

The sort method is the underlying implementation of the default onsort event listener. It
is also useful if you wan to sort the rows by Java codes. For example, you might have to
call this method after adding rows (assuming not in the proper order).

Row row = new Row();
row.setParent (rows) ;

row.appendChild(...);

if (!"natural".column.getSortDirection())

column.sort ("ascending".equals (column.getSortDirection()));

The default sorting algorithm is quick-sort (by use of the sort method from the
org.zkoss.zk.ui.Components class). You might override it with your own
implementation.

Note: the sort method checks the sort direction (by calling getSortDirection). It sorts
the rows only if the sort direction is different. To enforce the sorting, do as follows.

column.setSortDirection ("natural");
sort (myorder) ;

The above codes are equivalent to the following.

Isort(myorder, true) ; |

Live Data

Like list boxes, grids support the live data. With live data, developers could separate the
data from the view. In other words, developers needs only to provide the data by
implementing the org.zkoss.zul.ListModel interface. Rather than manipulating the grid
directly. The benefits are two folds.

ZK: Developer's Guide Page 108 of 211 Potix Corporation

« It is easier to use different views to show the same set of data.

« The grid sends the data to the client only if it is visible. It saves a lot of network
traffic if the amount of data is huge.

There are three steps to use the live data.

1. Prepare the data in the form of ListModel. ZK has a concrete implementation called
org.zkoss.zul.SimpleListModel. for representing an array of objects

2. Implement the org.zkoss.zul.RowRenderer interface for rendering a row of data
into the grid.

« This is optional. If not specified, the default renderer is used to render the data
into the first column.

+ You could implement different renderers for represent the same data in different
views.

3. Specify the data in the model property, and, optionally, the renderer in the
rowRenderer property.

In the following example, we prepared a list model called strset, assigned it to a grid
through the model property. Then, the grid will do the rest.

<window title="Live Grid" border="normal">
<zscript>
String[] data = new String[30];
for (int j=0; J < data.length; ++3j) {

data[j] = "option "+j; options
} option 0 :
ListModel strset = new SimplelistModel (data); . E|
option 1
</zscript>
) i i option 2
<grid width="100px" height="100px" model="${strset}"> .
option 2
<columns> - .
oantiam A
<column label="options"/>
</columns>
</grid>
</window>

Special Properties

The spans Property

It is a list of integers, separated by coma, to control whether to span a cell over several
columns. The first number in the list denotes the number of columns the first cell shall
span. The second number denotes that of the second cell and so on. If the number is
omitted, 1 is assumed.

For example,

ZK: Developer's Guide Page 109 of 211 Potix Corporation

<grid>
<columns>

</columns>
<rows>
<row>
<label value="Item
<label value="Item
<label value="Item
</row>
<row spans="1,2,2">
<label value="Item
<label value="Item
</row>
<row spans="3">
<label value="Item
<label value="Item
</row>
<row spans=",,2,2">
<label value="Item
<label value="Item

</row>
</rows>
</grid>
Left Center
Item A1 Item A.2
Item B.1 Item B.
Item C.1
Item D.1 Item D.2

More Layout Components

Separators and Spaces

.1"/><label
.3"/><1label
.5"/><1label

.1"/><label
4" /><label

.1"/><label
.5"/><1label

.1"/><label
.3"/><label

Right
Item A3

Components: separator and space.

value="Item
value="Item

value="Item

value="Item

value="Item

value="Item

value="Item

value="Item

value="Item

Column 4
Item A.4
Item B.4
Item C.4

2" />
L4v/>
6" />

2"/ >
6" />

L4v/>
6" />

2"/ >
5" />

Column 5
Item A5

Item C.5

Item D.3 Item D.5

<column label="Left" align="left"/><column label="Center" align="center"/>
<column label="Right" align="right"/><column label="Column 4"/>
<column label="Column 5"/><column label="Column 6"/>

Column 6
Item A.6
Item B.6
Item C.6

A separator is used to insert a space between two components. There are several ways to

customize the separator.

1. By use of the orient property, you could specify a vertical separator or a horizontal
separator. By default, it is a horizontal separator, which inserts a line break. On the
other hand, a vertical separator inserts a white space. In addition, space is a variant
of separator whose default orientation is vertical.

2. By use of the bar property, you could control whether to show a horizontal or vertical

line between component.

3. By use of the spacing property, you could control the size of spacing.

ZK: Developer's Guide

Page 110 of 211

Potix Corporation

<window> line 1 by separator

line 1 by separator line 2 by separator

<separator/> line 3 by separator | another piece

line 2 by separator

<separator/>

line 3 by separator<space bar="true"/>another line 4 by separator | another piece
piece

<separator spacing="20px"/>
line 4 by separator<space bar="true" spacing="20px"/>another piece
</window>

Group boxes
Components: groupbox.

A group box is used to group components together. A border is typically drawn around the
components to show that they are related.

The label across the top of the group box can be created by using the caption component. It
works much like the HTML legend element.

Unlike windows, a group box is not an owner of the ID space. It cannot be overlapped or

popup.

<groupbox width="250px"> Fruits
<caption label="Fruits"/> O Apple O Orange (O Banana
<radiogroup>

<radio label="Apple"/>

<radio label="Orange"/>

<radio label="Banana"/>
</radiogroup>

</groupbox>

In addition to the default mold, the group box also supports the 3d mold. If the 3d mold is
used, it works similar to a simple-tab tab box. First, you could control whether its content is
visible by the open property. Similarly, you could create the content of a group box when the
onOpen event is received.

<groupbox mold="3d" open="true" width="250px">
<caption label="fruits"/>

<radiogroup> [Fruits]
<radio label="Apple"/>) apple C orange ' Banana ‘

<radio label="Orange"/>
<radio label="Banana"/>
</radiogroup>

</groupbox>

The contentStyle Property and Scrollable Groupbox

The contentStyle property is used to specify the CSS style for the content block of the

ZK: Developer's Guide Page 111 of 211 Potix Corporation

groupbox. Thus, you can make a groupbox scrollable by specify overflow:auto (or
overflow:scroll) as follows.

<groupbox mold="3d" width="150px" contentStyle="height:50px;overflow:auto">
<caption label="fruits"/>

<radiogroup onCheck="fruit.value = self.selectedItem.label" orient="vertical">
<radio label="Apple"/> — \
. | fruits ‘
<radio label="Orange"/> |
<radio label="Banana"/> I apple f|
</radiogroup>) orange
</groupbox>) Ranana b

Note: The contentStyle property is ignored if the default mold is used. |

The height specified in the contentsStyle property means the height of the content block,
excluding the caption. Thus, if the groupbox is dismissed (i.e., the content block is not
visible), the height of the whole groupbox will be shrinked to contain only the caption. On
the other hand, if you specify the height for the whole groupbox (by use of the height
property), only the content block disappears and the whole height remains intact, when
dismissing the groupbox.

Toolbars
Components: toolbar and toolbarbutton.

A toolbar is used to place a series of buttons, such as toolbar buttons. The toolbar buttons
could be used without toolbars, so a toolbar could be used without tool buttons. However,
tool buttons change their appearance if they are placed inside a toolbar.

The toolbar has two orientation: horizontal and vertical. It controls how the buttons are
placed.

<toolbar>
<toolbarbutton label="buttonl"/>
<toolbarbutton label="button2"/>
</toolbar>

buttoni buttonz

Menu bars

C0n1p0nentS:menubar,menupopup,menu,menuitenland menuseparator.

A menu bar contains a collection of menu items and sub menus. A sub menu contains a collection
of menu items and other sub menus. They, therefore, constructs a tree of menu items that user
could select to execute.

An example of menu bars is as follows.

|<menubar> |

ZK: Developer's Guide Page 112 of 211 Potix Corporation

<menu label="File"> File Helg

Index |
<menupopup> Aboutb| About ZK
<menuitem label="New"/> About Potix

<menuitem label="Open"/>

<menuseparator/>
<menuitem label="Exit"/>
</menupopup>
</menu>
<menu label="Help">
<menupopup>
<menuitem label="Index"/>
<menu label="About">
<menupopup>
<menuitem label="About ZK"/>
<menuitem label="About Potix"/>
</menupopup>
</menu>
</menupopup>
</menu>

</menubar>

+ menubar: The topmost container for a collection of menu items (menuitem) and menus

(menu).

+ menu: The container of a popup menu. It also defines the label to be displayed at part of its
parent. When user clicks on the label, the popup menu appears.

+ menupopup: A container for a collection of menu items (menuitem) and menus (menu). It is
a child of menu and appears when the label of menu is clicked.

+ menuitem: An individual command on a menu. This could be placed in a menu bar, or a
popup menu.

- menuseparator: A separator bar on a menu. This would be placed in a popup menu.

Execute a Menu Command

A menu command is associated with a menu item. There are two ways to associate a
command to it: the onClick event and the href property. If a event listener is added for a
menu item for the onClick event, the listener is invoked when the item is clicked.

|<menuitem onClick="draft.save()"/> |

On the other hand, you could specify the href property to hyperlink to the specified URL
when a menu item is clicked.

<menuitem href="/edit"/>

<menuitem href="http://zkl.sourceforge.net"/>

If both of the event listener and href are specified, they will be executed. However, when
the event listener get executed in the server, the browser might already change the current

ZK: Developer's Guide Page 113 of 211 Potix Corporation

URL to the specified one. Thus, all responses generated by the event listener will be ignored.

Use Menu Items as Check Boxes

A menu item could be used as a check box. The checked property denotes whether this
menu item is checked. If checked, a check icon is appeared in front of the menu item.

In addition to programming the checked property, you could specify the autocheck property
to be true, such that the checked property is toggled automatically when user clicks the
menu item.

|<menuitem label="" autocheck="true"/> |

The autodrop Property

By default, the popup menu is opened when user clicks on it. You might change this to
automatically popup menu when the mouse moves over it. This is done by setting the
autodrop property to true.

<menubar autodrop="true">

</menubar>

The onOpen Event and Load-on-Demand

You can dynamically create or alter the content of menupopup by listening to the onOpen
event. Refer to the Context Menu section below for details.

More Menu Features

Like box, you could control the orientation of a menu by use of the orient property. By
default, the orientation is horizontal.

Like other components, you could change the menu dynamically, including properties and
creating sub menus. Refer to menu.zul under the test directory in zkdemo.

Context Menus
Components: popup and menupopup.

You can assign the ID of a popup or menupopup component to the context property of any XUL
component, such that the popup or menupopup component is opened when an user right-clicks on
it.

As depicted below, a context menu is enabled by simply assigning the ID to the context property.
Of course, you can assign the same ID to multiple components.

ZK: Developer's Guide Page 114 of 211 Potix Corporation

<label value="Right Click Me!" context="editPopup"/>
<separator bar="true"/>
<label value="Right Click Me!" onRightClick="alert (self.value)"/>

<menupopup id="editFopup">
<menuitem label="Undo"/> mghtCHckNEJd
nac
<menuitem label="Redo"/> Right Click Rede
Sort p

<menu label="Sort">
<menupopup>
<menuitem label="Sort by Name" autocheck="true"/>
<menuitem label="Sort by Date" autocheck="true"/>
</menupopup>

</menu>

</menupopup>

Notice that menupopup is not visible until an user right-clicks on a component associated with its

ID.

Trick: If you just want to disable browser's default context menu, you can specify non-
existent ID to the context property.

The popup component is a more generic popup than menupopup. You can place any kind of
components inside of popup. For example,

<label value="Right Click Me!" context="any"/>

<popup id="any" width="300px">
<vbox>
It can be anything.
<toolbarbutton label="ZK" href="http://zkl.sourceforge.net"/>
</vbox>

</popup>

Customizable Tooltip and Popup Menus

In addition to open a popup when user right-clicks a component, ZK can open a popup under
other circumstances.

Property Description
context When user right clicks a component with the context property, the
popup Or menupopup component with the specified id is shown.

tooltip When user move the mouse pointer over a component with the
tooltip property, the popup Or menupopup component with the
specified id is shown.

popup When user clicks a component with the popup property, the popup or
menupopup component with the specified id is shown.

For example,

ZK: Developer's Guide Page 115 of 211 Potix Corporation

<window title="Context Menu and Right Click" border="normal" width="360px">
<label value="Move Mouse Over Me!" tooltip="editPopup"/>
<separator bar="true"/>
<label value="Tooptip for Another Popup" tooltip="any"/>
<separator bar="true"/>
<label value="Click Me!" popup="editPopup"/>

<menupopup id="editPopup">
<menuitem label="Undo"/>
<menuitem label="Redo"/>
<menu label="Sort">
<menupopup>
<menuitem label="Sort by Name" autocheck="true"/>
<menuitem label="Sort by Date" autocheck="true"/>
</menupopup>
</menu>
</menupopup>
<popup id="any" width="300px">
<vbox>
ZK simply rich.
<toolbarbutton label="ZK your killer Web application now!"
href="http://zkl.sourceforge.net"/>
</vbox>
</popup>
</window>

Notice that you can specify any identifier in the popup, tooltip and context properties, as
long as they are in the same page. In other words, it is not confined by the ID space.

The onOpen Event and Load-on-Demand

You can dynamically create or alter the content of popup or menupopup by listening to the
onOpen event.

When a context menu, a tooltip or a popup is going to appear, an onOpen event is sent to
the context, tooptip or poup menu for notification. Therefore, you can create or alter its
content on-the-fly when receiving the onopen event.

The event is an instance of the org.zkoss.zk.ui.event.OpenEvent class, and you can
retrieve the component that causes the context menu, tooltip or popup to appear by calling
the getReference method. It is useful if the content of the context menu depends on the
component being clicked.

<popup id="any" width="300px">
<attribute name="onOpen">
if (event.isOpen()) {
if (self.getChildren() .isEmpty()) {
new Label ("Popup") .seParent (self);

}

if (event.getReference() instanceof Textbox) {

ZK: Developer's Guide Page 116 of 211 Potix Corporation

//you can do component-dependent manipulation here

}
</attribute>
</popup>

List Boxes
Components: listbox, listitem, listcell, listhead and listheader.
A list box is used to display a number of items in a list. The user may select an item from the list.

The simplest format is as follows. It is a single-column and single-selection list box.

<listbox> Butter Pecan
<listitem label="Butter Pecan"/> Chocolate Chip
Raspberry Ripple
<listitem label="Chocolate Chip"/>
<listitem label="Raspberry Ripple"/>
</listbox>

Listbox has two molds: default and select. If the select mold is used, the HTML's SELECT tag is
generated instead.

Butter Pecan e

; —_n 1] . Chocolate Chip
|<llstbox mold="select">...</listbox> Rospberry Ripple -

Notice: if mold is "select", rows is "1", and none of items is marked as selected, the
browser displays the listbox as if the first item is selected. Worse of all, if user selects
the first item in this case, no onselect event is sent. To avoid this confusion, developers
shall select at least one item for mold="select" and rows="1".

In addition to label, you can assign an application-specific value to each item using the setvalue
method.

Mouseless Entry listbox

+ UPp and DOWN to move the selection up and down one list item.

* PgUp and pgDn to move the selection up and down in a step of one page.

* HOME to move the selection to the first item, and exD to the last item.

e Ctrl+UP and ctrl+DOWN to move the focus up and down one list item without
changing the selection.

* SPACE to select the item of the focus.

Multi-Column List Boxes

The list box also supports multiple columns. When user selects an item, the entire row is
selected.

To specify a multi-column list, you need to specify the listcell components as collumns of

ZK: Developer's Guide Page 117 of 211 Potix Corporation

each listitem (as a row).

<listbox width="200px">

<listitem> George House Painter
<listcell label="George"/> EE;F“” gﬂﬂiﬂiﬁT
<listcell label="House Painter"/>

</listitem>

<listitem>

<listcell label="Mary Ellen"/>
<listcell label="Candle Maker"/>
</listitem>
<listitem>
<listcell label="Roger"/>
<listcell label="Swashbuckler"/>
</listitem>
</listbox>

Column Headers

You could specify the column headers by use of listhead and listheader as follows®. In
addition to label, you could specify an image as the header by use of the image property.

<listbox width="200px">

. Mame Occupation
<listhead> George House Painter
<listheader label="Name"/> e Elen e e
Roger Swashbuckler

<listheader label="Occupation"/>
</listhead>

</listbox>

Column Footers

You could specify the column footers by use of 1listfoot and listfooter as follows. Notice
that the order of 1isthead and listfoot doesn't matter. Each time a 1listhead instance is
added to a list box, it must be the first child, and a 1istfoot instance the last child.

<listbox width="200px">

<listhead> Population %

<listheader label="Population"/> A. Graduate 20%

. . . B. College 23%
<listhead 1 =" ht" label="%"/> ;

Sotstheader atign=irig abe / C. High School 40%

</listhead> D. Others 17%

<listitem id="a" value="A"> More or less 100%

<listcell label="A. Graduate"/>
<listcell label="20%"/>
</listitem>
<listitem id="Db" value="B">
<listcell label="B. College"/>
<listcell label="23%"/>
</listitem>

36 This feature is a bit different from XUL, where listhead and listheader are used.

ZK: Developer's Guide Page 118 of 211 Potix Corporation

<listitem id="c" value="C">
<listcell label="C. High School"/>
<listcell label="40%"/>
</listitem>
<listitem id="d" value="D">
<listcell label="D. Others"/>
<listcell label="17%"/>
</listitem>
<listfoot>
<listfooter label="More or less"/>
<listfooter label="100%"/>
</listfoot>
</listbox>

Drop-Down List

You could create a drop-down list by specifying the select mold and single row. Notice you
cannot use multi-column for the drop-down list.

<listbox mold="select" rows="1">
<listitem label="Car"/>
<listitem label="Taxi"/> Taxi
<listitem label="Bus" selected="true"/> Train
<listitem label="Train"/>

</listbox>

Multiple Selection

When user clicks on a list item, the whole item is selected and the onSelect event is sent
back to the server to notify the application. You could control whether a list box allows
multiple selections by setting the multiple property to true. The default value is false.

Scrollable List Boxes

A list box is scrollable if you specify the rows property or the height property, and there is
no enough to show all list items.

<listbox width="250px" rows="4">

<listhead> Name Gender
. Mary FEMALE .
<listheader label="Name" sort="auto"/> Tohn MALE [I
<listheader label="Gender" sort="auto"/> Jane FEMALE
</listhead> Henry MALE v
<listitem>

<listcell label="Mary"/>
<listcell label="FEMALE"/>
</listitem>
<listitem>
<listcell label="John"/>
<listcell label="MALE"/>
</listitem>

ZK: Developer's Guide Page 119 of 211 Potix Corporation

<listitem>
<listcell label="Jane"/>
<listcell label="FEMALE"/>
</listitem>
<listitem>
<listcell label="Henry"/>
<listcell label="MALE"/>
</listitem>
<listitem>
<listcell label="Michelle"/>
<listcell label="FEMALE"/>
</listitem>
</listbox>

The rows Property

The rows property is used to control how many rows are visible. By setting it to zero, the
list box will resize itself to hold as many as items if possible.

Sizable List Headers

Like columns, you can set the sizable property of 1isthead to true to allow users to resize
the width of list headers. Similarly, the oncolsize event is sent when an user resized the
widths.

List Boxes with Paging

Like grids, you can use multiple pages to represent long content for list boxes by specifying
the paging mold. Similarly, you can control how many items for each page to display,
whether to use an external paging component and whether to customize the behavior when
a page is selected. Refer to the Grids section for more details.

Sorting

List boxes support sorting of list items directly. There are a few ways to enable the sorting of
a particular column. The simplest way is to set the sort property of the list header to auto
as follows. Then, the column that the list header is associated with is sortable based on the
label of each list cell of the specified column.

<zk>
<listbox width="200px"> name gender
<listhead> Henry MALE
<listheader label="name" sort="auto"/> jiﬂﬁ EEEELE
<listheader label="gender" sort="auto"/> Mary FEMALE
</listhead>
<listitem>

<listcell label="Mary"/>
<listcell label="FEMALE"/>

ZK: Developer's Guide Page 120 of 211 Potix Corporation

</listitem>

<listitem>
<listcell label="John"/>
<listcell label="MALE"/>

</listitem>

<listitem>
<listcell label="Jane"/>
<listcell label="FEMALE"/>

</listitem>

<listitem>
<listcell label="Henry"/>
<listcell label="MALE"/>

</listitem>

</listbox>
</zk>

The sortAscending and sortDescending Properties

If you prefer to sort list items in different ways, you can assign a java.util.Comparator
instance to the sortAscending and/or sortDescending property. Once assighed, the list
items can be sorted in the ascending and/or descending order with the comparator you
assigned.

The invocation of the sort property with auto actually assign two comparators to the
sortAsceding and sortDescending automatically. You can override any of them by
assigning another comparator to it.

For example, assume you want to sort based on the value of list items, rather than list
cell's label, then you assigh an instance of ListitemComparator to these properties as
follows.

<zscript>
Comparator asc = new ListitemComarator (-1, true, true);
Comparator dsc = new ListitemComarator (-1, false, true);
</zscript>
<listbox>
<listhead>

<listheader sortAscending="${asc}" sortDescending="${dsc}"/>

The sortDirection Property

The sortDirection property controls whether to show an icon at the client to indicate the
order of the particular column. If list items are sorted before adding to the list box, you
shall set this property explicitly.

|<listheader sortDirection="ascending"/> |

Then, it is maintained automatically by list boxes as long as you assign the comparator to
the corresponding list header.

ZK: Developer's Guide Page 121 of 211 Potix Corporation

The onSort Event

When you assign at least one comparator to a list header, an onsort event is sent to the
server if user clicks on it. The list header implements a listener to handle the sorting
automatically.

If you prefer to handle it manually, you can add your listener to the list header for the
onSort event. To prevent the default listener to invoke the sort method, you have to call
the stopPropagation method against the event being received. Alternatively, you can
override the sort method, see below.

The sort Method

The sort method is the underlying implementation of the default onsort event listener. It
is also useful if you wan to sort the list items by Java codes. For example, you might have
to call this method after adding items (assuming not in the proper order).

new Listem ("New Stuff").setParent (listbox);
if (!"natural".header.getSortDirection())
header.sort ("ascending".equals (header.getSortDirection()));

The default sorting algorithm is quick-sort (by use of the sort method from the
org.zkoss.zk.ui.Components class). You might override it with your own
implementation, or listen to the onSort event as described in the previous section.

Tip: Sorting huge number of live data might degrade the performance significantly. It is
better to intercept the onSort event or the sort method to handle it effectively. Refer to
the Sort Live Data section below.

Special Properties

The checkmark Property

The checkmark property controls whether to display a checkbox or a radio button in front
of each list item.

In the following example, you will see how a checkbox is added automatically, when you
move a list item from the left list box

Population Percentage | ==_|Population Percentage
to the right one. The checkbox is a. craduate 20% [==] [JE. Supermen 21%
removed when you move a list item C. High Schocl 0%
. [e. college 23%
from right to left.
<hbox>
<listbox id="src" rows="0" multiple="true" width="200px">
<listhead>
<listheader label="Population"/>
<listheader label="Percentage"/>
</listhead>

ZK: Developer's Guide Page 122 of 211 Potix Corporation

<listitem id="a" value="A">
<listcell label="A. Graduate"/>
<listcell label="20%"/>
</listitem>
<listitem id="b" value="B">
<listcell label="B. College"/>
<listcell label="23%"/>
</listitem>
<listitem id="c" value="C">
<listcell label="C. High School"/>
<listcell label="40%"/>
</listitem>
<listitem id="d" value="D">
<listcell label="D. Others"/>
<listcell label="17%"/>
</listitem>
</listbox>
<vbox>
<button label="=>" onClick="move (src, dst)"/>
<button label="<=" onClick="move (dst, src)"/>
</vbox>
<listbox id="dst" checkmark="true" rows="0" multiple="true" width="200px">
<listhead>
<listheader label="Population"/>
<listheader label="Percentage"/>
</listhead>
<listitem id="e" value="E">
<listcell label="E. Supermen"/>
<listcell label="21%"/>
</listitem>
</listbox>
<zscript>
void move (Listbox src, Listbox dst) {
Listitem s = src.getSelectedItem();
if (s == null)
Messagebox.show ("Select an item first");
else
s.setParent (dst) ;

</zscript>
</hbox>
Notice that if the multiple property is false, the radio buttons Population Percentage
are displayed instead, as depicted at the right. A, Graduate 20%
)C. High School 40%
The vflex Property OD. Others 17%

The vflex property controls whether to grow and shrink vertical to fit their given space. It
is so-called vertical flexibility. For example, if the list is too big to fit in the browser
window, it will shrink its height to make the whole list control visible in the browser
window.

ZK: Developer's Guide Page 123 of 211 Potix Corporation

This property is ignored if the rows property is specified.

The maxlength Property

The maxlength property defines the maximal allowed characters being visible at the
browser. By setting this property, you could make a narrower list box.

Live Data

Like grids®, list boxes support the live data. With live data, developers could separate the
data from the view. In other words, developers needs only to provide the data by
implementing the org.zkoss.zul.ListModel interface. Rather than manipulating the list
box directly. The benefits are two folds.

« It is easier to use different views to show the same set of data.

« The list box sends the data to the client only if it is visible. It saves a lot of network
traffic if the amount of data is huge.

There are three steps to use the live data.

1. Prepare the data in the form of ListModel. ZK has a concrete implementation called
org.zkoss.zul.SimpleListModel. for representing an array of objects.

2. Implement the org.zkoss.zul.ListitemRenderer interface for rendering an item of
data into a list item of the list box.

« This is optional. If not specified, the default renderer is used to render the data
into the first column.

« You could implement different renderers for represent the same data in different
views.

3. Specify the data in the model property, and, optionally, the renderer in the
itemRenderer property.

In the following example, we prepared a list model called strset, assigned it to a list box
through the model property. Then, the list box will do the rest.

<window title="Livedata Demo" border="normal"> Livedata Demo

<zscript> Load on Demend ~

String[] data = new String[30]; option 0

for(int j=0; j < data.length; ++j) { option 1

data[j] = "option "+7; option 2

(3] P J option 3

} option 4

ListModel strset = new SimplelistModel (data); option 5

</zscript> option 6

J g _n " —_n " —_n " Option ?

<listbox width="200px" rows="10" model="${strset}"> option 8
<listhead> antion 9 hd

37 The concept is similar to Swing (javax.swing.ListModel).

ZK: Developer's Guide Page 124 of 211 Potix Corporation

<listheader label="Load on demend"/>
</listhead>
</listbox>
</window>

Sort Live Data

The default implementation of the sort method invokes the renderall method of Listbox
to ensure all list items if live data, i.e., ListModel, are loaded. It might not be appropriate if
there are a lot of data to load. On the other hand, there is usually a better way to sort them.
For example, in a database application, you usually can use the SELECT command with the
proper ORDER BY to load data on the fly. Then, you shall either intercept the onSort event or
override the sort method to handle the sorting manually.

public class MyListheader extends Listheader ({
public boolean sort (boolean ascending) {
final String dir = getSortDirection();
if (ascending) {
if ("ascending".equals(dir)) return false;
} else {
if ("descending".equals(dir)) return false;

((MyListModel)getListbox () .getModel ()) .setSortDirection (ascending);
return true;

Then,

public class MyListModel extends AbstractListModel {
public void setSortDirection (boolean ascending) {
//Issue SQL similar to: SELECT x, y, z FROM tbl ORDER BY xx ASC (or DESC)
fireEvent (ListDataEvent.CONTENTS CHANGED, 0, size - 1);
//notify Listbox to redraw

List Boxes Contain Buttons

In theory, a list cell could contain any other components, as depicted below.

<listbox width="250px">

' Population Percentage

<listhead> A. Graduate 20%
<listheader label="Population"/> M E. College
<listheader label="Percentage"/> C. High School 40%

</listhead>

<listitem value="A">
<listcell><textbox value="A. Graduate"/></listcell>
<listcell label="20%"/>

ZK: Developer's Guide Page 125 of 211 Potix Corporation

</listitem>
<listitem value="B">
<listcell><checkbox label="B. College"/></listcell>
<listcell><button label="23%"/></listcell>
</listitem>
<listitem value="C">
<listcell label="C. High School"/>
<listcell><textbox cols="8" value="40%"/></listcell>
</listitem>
</listbox>

Notes:

1. Don't use a list box, when a grid is a better choice. The appearances of list boxes and
grids are similar, but the list box shall be used only to represent a list of selectable
items.

2. Users are usually confused if a list box contains editable components, such as
textbox and checkbox. A common question is what the text, that a user entered in a
unselected item, means.

3. Due to the limitation of the browsers, users cannot select a piece of characters from
the text boxes.

Tree Controls

Components: tree, treechildren, treeitem, treerow, treecell, treecols and treecol.

A tree consists of two parts, the set of columns, and the tree body. The set of columns is defined
by a number of treecol components, one for each column. Each column will appear as a header
at the top of the tree. The second part, the tree body, contains the data to appear in the tree and
is created with a treechildren component.

An example of a tree control is as follows.

<tree id="tree" rows="5"> e
escription &

<treecols> Item 1 description -
<treecol label="Name"/> Itemn 2 description II

<treecol label="Description"/>

</treecols>
<treechildren>
<treeitem>
<treerow>
<treecell label="Item 1"/>
<treecell label="Item 1 description"/>
</treerow>
</treeitem>
<treeitem>
<treerow>
<treecell label="Item 2"/>

ZK: Developer's Guide Page 126 of 211 Potix Corporation

<treecell label="Item 2 description"/>
</treerow>
<treechildren>
<treeitem>
<treerow>
<treecell label="Item 2.1"/>
</treerow>
<treechildren>
<treeitem>
<treerow>
<treecell label="Item 2.1.1"/>
</treerow>
</treeitem>
<treeitem>
<treerow>
<treecell label="Item 2.1.2"/>
</treerow>
</treeitem>
</treechildren>
</treeitem>
<treeitem>
<treerow>
<treecell label="Item 2.2"/>
<treecell label="Item 2.2 is something who cares"/>
</treerow>
</treeitem>
</treechildren>
</treeitem>
<treeitem label="Item 3"/>
</treechildren>
</tree>

+ tree: This is the outer component of a tree control.
+ treecols: This component is a placeholder for a collection of treecol components.

+ treecol: This is used to declare a column of the tree. By using this comlumn, you can
specify additional information such as the column header.

+ treechildren: This contains the main body of the tree, which contain a collection of
treeitem components

+ treeitem: This component contains a row of data (treerow), and an optional

treechildren.

O If the component doesn't contain a treechildren, it is a leaf node that doesn't accept
any child items.

O Ifit contains a treechildren, it is a branch node that might contain other items.

O For a branch node, an +/- button will appear at the beginning of the row, such that
user could open and close the item by clicking on the +/- button.

ZK: Developer's Guide Page 127 of 211 Potix Corporation

+ treerow: A single row in the tree, which should be placed inside a treeitem component.

+ treecol: A single cell in a tree row. This element would go inside a treerow component.

Mouseless Entry tree
* UP and DOWN to move the selection up and down one tree item.

* PgUp and pgDn to move the selection up and down in a step of one page.

* HOME to move the selection to the first item, and END to the last item.

e RIGHT to open a tree item, and LEFT to close a tree item.

e Ctrl+UP and Ctrl+DOWN to move the focus up and down one tree item without
changing the selection.

* SPACE to select the item of the focus.

The open Property and the onopen Event

Each tree item has the open property used to control whether to display its child items. The
default value is true. By setting this property to false, you could control what part of the tree
is invisible.

|<treeitem open="false"> |

When a user clicks on the +/- button, he opens the tree item and makes its children visible.
The onOpen event is then sent to the server to notify the application.

The onOpen Event and Load-on-Demand

You can implement the load-on-demand feature by listening to the onOpen event, and then
create components when the treeitem is opened at the first time. Refer to the Context
Menus section for details.

Multiple Selection

When user clicks on a tree item, the whole item is selected and the onSelect event is sent
back to the server to notify the application. You could control whether a tree control allows
multiple selections by setting the multiple property to true. The default value is false.

Special Properties

The rows Property

The rows property is used to control how many rows are visible. By setting it to zero, the
tree control will resize itself to hold as many as items if possible.

The checkmark Property

The checkmark property controls whether to display a checkbox or a radio button in front

ZK: Developer's Guide Page 128 of 211 Potix Corporation

of each tree item.

Subject From Received -
[& Intel Snares XML David Needle 7-12-2005 [f
Intel Snares XML 7-12-2005 Il
[0 Unknown chaos

1 5 c# versus lava David Longman 7-10-2005

O E-tem 3.1

The vflex Property

The vflex property controls whether to grow and shrink vertical to fit their given space. It
is so-called vertical flexibility. For example, if the tree is too big to fit in the browser
window, it will shrink the height to make the whole tree visible in the browser window.

This property is ignored if the rows property is specified.

The maxlength Property

The maxlength property defines the maximal allowed characters being visible at the
browser. By setting this property, you could make a narrower tree control.

Sizable Columns

Like columns, you can set the sizable property of treecols to true to allow users to
resize the width of tree headers. Similarly, the onColSize event is sent when an user
resized the widths.

Create-on-Open for Tree Controls

As illustrated below, you could listen to the onOpen event, and then load the children of an
tree item. Similarly, you could do create-on-open for group boxes.

<tree width="200px">
<treecols>
<treecol label="Subject"/>
<treecol label="From"/>
</treecols>
<treechildren>
<treeitem open="false" onOpen="load()">
<treerow>
<treecell label="Intel Snares XML"/>
<treecell label="David Needle"/>
</treerow>
<treechildren/>
</treeitem>
</treechildren>
<zscript>
void load() {
Treechildren tc = self.getTreechildren();

ZK: Developer's Guide Page 129 of 211 Potix Corporation

if (tc.getChildren() .isEmpty()) {
Treeitem ti = new Treeitem() ;
ti.setLabel ("New added") ;
ti.setParent (tc);

}
</zscript>
</tree>

Comboboxes

Components: combobox and comboitem.

A combobox is a special text box that embeds a drop-down list. With comboboxes, users are
allowed to select from a drop-down list, in addition to entering the text manually.

<combobox> o
A
<comboitem label="Simple and Rich"/> ? -
Simple and Rich
<comboitem label="Cool!"/> Cooll
Ajax and RIA
<comboitem label="Ajax and RIA"/>
</combobox>
Mouseless Entry combobox

e Alt+DOWN to pop up the list.
e Alt+UP or ESC to close the list.

« UP and DowWN to change the selection of the items from the list.

The autodrop Property

By default, the drop-down list won't be opened until user clicks the ¥ button, or press
Alt+DOWN. However, you could set the autodrop property to true, such that the drop-down
list is opened as soon as user types any character. This is helpful for novice users, but it
might be annoying for experienced users.

|<combobox autodrop="true"/>

The description Property

You could add a description to each combo item to make it more descriptive. In addition, you
could assign an image to each combo item.

<combobox>
<comboitem label="Simple and Rich" image="/img/coffee.gif"
description="The simplest way to make Web applications rich"/>
<comboitem label="Cool!" image="/img/corner.gif"
description="The coolest technology"/>
<comboitem label="Ajax and RIA" image="/img/cubfirs.gif"

description="Rich Internet Application by Ajax"/>

ZK: Developer's Guide Page 130 of 211 Potix Corporation

’</combobox>

Like other components that support images, you could W
use the setImageContent method to assign the content & STP52125 i oo oot

of a dynamically generated image to the comboitem P o
component. Refer to the Image section for details. .’“{aj‘_i”_d RIA

The onOpen Event and Load-on-Demand

The onOpen event is sent to the application if user opens the drop-down list. By listening to
the onOpen event, you could prepare the drop-down list only when it is needed.

<combobox id="combo" onOpen="prepare()"/>
<zscript>
void prepare () {
if (event.isOpen () && combo.getItemCount () == 0) {
combo.appendItem("Simple and Rich");
combo.appendItem("Cool!");
combo.appendItem("Ajax and RIA");

}

</zscript>

The appendItem method is equivalent to create a combo item and then assign its parent to
the como box.

The onChanging Event

Since a combobox is also a text box, the onChanging event will be sent if you add a listener

for it. By listening to this event, you could manipulate the drop-down list as the Google
Suggests® does.

As illustrated below, you could fill the drop-down list based on what user is entering.

<combobox id="combo" autodrop="true" onChanging="suggest ()"/>
<zscript>
void suggest () {

combo.clear () ;

if (event.value.startsWith ("A")) {
combo.appendItem ("Ace");
combo.appendItem("Ajax") ;
combo.appendItem ("Apple") ;

} else if (event.value.startsWith ("B")) {
combo.appendItem ("Best") ;
combo.appendItem("Blog") ;

}

</zscript>

38 http://www.google.com/webhp?complete=1&hl=en

ZK: Developer's Guide Page 131 of 211 Potix Corporation

Notice that, when the oncChanging event is received, the content of the combobox is not
changed yet. Thus, you cannot use the value property of the combobox. Rather, you shall
use the value property of the event (org.zkoss.zk.ui.event.InputEvent).

Bandboxes
Components: bandbox and bandpopup.

A bandbox is a special text box that embeds a customizable popup window (aka., a dropdown
window). Like comboboxes, a bandbox consists of an input box and a popup window. The popup
window is opened automatically, when users presses A1t+DOWN or clicks the |G button.

Unlike comboboxes, the popup window of a bandbox could be anything. It is designed to give
developers the maximal flexibility. A typical use is to represent the popup window as a search
dialog.

<bandbox id="bd">
<bandpopup>
<vbox>
<hbox>Search <textbox/></hbox>
<listbox width="200px"
onSelect="bd.value=self.selectedItem.label; bd.closeDropdown () ;">
<listhead>
<listheader label="Name"/> Joe E%
<listheader label="Description"/>
</listhead> Search
<listitem> Name Description
<listcell label="John"/> John CEO
<listcell label="CEO"/> Joe Engineer
</listitem> Mary Supervisor
<listitem>
<listcell label="Joe"/>
<listcell label="Engineer"/>
</listitem>
<listitem>
<listcell label="Mary"/>
<listcell label="Supervisor"/>
</listitem>
</listbox>
</vbox>
</bandpopup>
</bandbox>
Mouseless Entry bandbox

e Alt+DOWN to pop up the list.
e Alt+UP or ESC to close the list.

« UP and DOWN to change the selection of the items from the list.

ZK: Developer's Guide Page 132 of 211 Potix Corporation

The closeDropdown Method

A popup window could contain any kind of components, so it is developer's job to copy the
value from and close the popup if one of item is selected.

In the above example, we copy the selected item's label to the bandbox, and then close the
popup by the following statement.

<listbox width="200px"
onSelect="bd.value=self.selectedItem.label; bd.closeDropdown () ;">

The autodrop Property

By default, the popup window won't be opened until user clicks the |4 button, or press
Alt+DOWN. However, you could set the autodrop property to true, such that the popup is

opened as soon as user types any character. This is helpful for novice users, but it might be
annoying for experienced users.

|<bandbox autodrop="true"/>

The onOpen Event and Load-on-Demand

The onOpen event is sent to the application if user opens the popup window. By listening to
the onOpen event, you could prepare the popup window only when it is needed.

<bandbox id="band" onOpen="prepare()"/>
<zscript>
void prepare () {
if (event.isOpen () && band.getPopup() == null) {
...//create child elements

}
</zscript>

The onChanging Event

Since a bandbox is also a text box, the onChanging event will be sent if you add a listener
for it. By listening to this event, you could manipulate the popup window any way you like.

As illustrated below, you could fill the drop-down list based on what user is entering.

<bandbox id="band" autodrop="true" onChanging="suggest ()"/>

<zscript>
void suggest () {
if (event.value.startsWith ("A")) {

...//do something
} else if (event.value.startsWith("B")) {
...//do another

ZK: Developer's Guide Page 133 of 211 Potix Corporation

|</zscript> |

Notice that, when the onChanging event is received, the content of the bandbox is not
changed yet. Thus, you cannot use the value property of the bandbox. Rather, you shall use

the value property of the event (org.zkoss.zk.ui.event.InputEvent).

Chart

Components: chart

A chart is used to show a set of data as a graph. It helps users to judge things with a snapshot.

The usage of chart component is straightforward. Prepare suitable data model and feed it into the

chart . The following is an example of pie chart.

<zscript><![CDATA[

model.setValue ("C/C++", new Double(17.5));
model.setValue ("PHP", new Double (32.5));
(

"Java", new Double(43.2)); —-" |
model.setValue ("VB", new Double (10.0));

model.setValue

mychart.setModel (model) ;
]1></zscript>
</chart>

<chart id="mychart" type="pie" width="400" height="200" threeD="true" fgAlpha="128">

CIC++ =17 .5

PieModel model = new SimplePieModel () ;
P WEB =10 [———, Lﬁ;ﬁ;

PHP =325

Different kind of chart is used to demonstrate different kind of data; therefore, chart has to be
provided suitable data model. For a pie chart, developers must provide PieModel as their data
model while bar chart, line chart, area chart, and waterfall chart needs CategoryModel and

XYModel.

Live Data

The above example is somehow a little bit misleading. In fact, developers don't have to
prepare the real data before feed it into a chart because chart components support live
data mechanism. With live data, developers could separate the data from the view. In other
words, developer can add, change, and remove data from the data model and the chart
would be redrawn accordingly. For some advanced implementation, developers can even
provide their own chart model by implementing the org.zkoss.zul.ChartModel interface.

Drill Down (The onClick Event)

When a user views a chart and finds something interesting, it is natural that the user would
like to see the detail information regarding that interesting point. It is usually a pie in a pie

ZK: Developer's Guide Page 134 of 211 Potix Corporation

chart, a bar in a bar chart or a point in a line chart. Chart components support such drill
down facility by automatically cutting a chart into area components and users can then
click on the chart to fire an onClick MouseEvent. Developers then locate the area
component and do whatever appropriate drill down.

In the area component's componentScope there are some useful information that developers
can use them.

name description
entity Entity type of the area. (e.g. TITLE, DATA, CATEGORY, LEGEND)
series Series name of the associated data (CategoryModel, XYModel, or HiLoModel).
category |[Category name of the associated data (PieModel or CategoryModel).
url An url in string that can be used to drill down to a legacy page.
value Numeric value of the associated data (PieModel or CategoryModel).
X x value of the associated data (XYModel).
y y value of the associated data (XYModel).
date date value of the associated data (HiLoModel).
open open value of the associated data (HiLoModel).
high high value of the associated data (HiLoModel).
low low value of the associated data (HiLoModel).
close close value of the associated data (HiLoModel).
volume volume value of the associated data (HiLoModel).

In the following example, we provide an onClick event listener on the chart. It locates the
associated area component and show the category of that area (i.e. the pie).

<chart id="mychart" type="pie" width="400" height="250">
<attribute name="onClick">
alert (self.getFellow(event.getArea()) .getAttribute ("category")):;
</attribute>
<zscript><! [CDATA[
PieModel model = new PieModel () ;
model.setValue ("C/C++", new Double(17.5));
model.setValue ("PHP", new Double (32.5));
model.setValue ("Java", new Double(43.2));
model.setValue ("VB", new Double(10.0));
mychart.setModel (model) ;
11></zscript>
</chart>

Manipulate Areas

Chart components also provide a area renderer mechanism that developers can manipulate
the cutting area components of the chart.

ZK: Developer's Guide Page 135 of 211 Potix Corporation

Only two steps needed to use the area renderer.

1. Implement the org.zkoss.zul.event.ChartArealistener interface for manipulating
the area components. e.g. Change the tooltiptext of the area.

2. Set the listener object or listener class name to the chart's arealistener property.

So developers get a chance to change the area component's properties or insert more
information into the area component's componentScope property and thus be passed
through to the onClick event listener.

Drag and Drop

ZK allows a user to drag particular components around within the user interface. For example,
dragging files to other directories, or dragging an item to the shopping cart to purchase.

A component is draggable if it can be dragged around. A component is droppable, if a user could
drop a draggable component to it.

Note: ZK does not assume any behavior about what shall take place after dropping. It is
up to application developers by writing the onDrop event listener.

If an application doesn't nothing, the dragged component is simply moved back where it
is originated from.

The draggable and droppable Properties

With ZK, you could make a component draggable by assigning any value, other than
"false", to the draggable property. To disable it, assign it with "false".

|<image draggable="true"/>

Similarly, you could make a component droppable by assigning "true" to the droppable
property.

|<hbox droppable="true"/>

Then, user could drag a draggable component, and then drop it to a droppable component.

The onDrop Event

Once user has dragged a component and dropped it to another component, the component
that the user dropped the component to will be notified by the onDrop event. The onDrop
event is an instance of org.zkoss.ui.event.DropEvent. By calling the getDragged method,
you could retrieve what has been dragged (and dropped).

Notice that the target of the onDrop event is the droppable component, not the component
being dragged.

ZK: Developer's Guide Page 136 of 211 Potix Corporation

Reorder by Drag-and-Drop

Unique Visitors of ZK:
Country/Area Visits %o
United States 5,093 19.39%

China 4,274 16.27%

1,892 7.20%
1 R4R 7 naog
1,892

100.00%

France 7.20%

26,267

The following is a simple example that allows users to reorder list items by drag-and-drop.

<window title="Reorder by Drag-and-Drop" border="normal">

Unique Visitors of ZK:
<listbox id="src" multiple="true" width="300px">
<listhead>
<listheader label="Country/Area"/>
<listheader align="right" label="Visits"/>
<listheader align="right" label="%"/>
</listhead>

<listitem draggable="true" droppable="true" onDrop="move (event.dragged) ">

<listcell label="United States"/>

<listcell label="5,093"/>

<listcell label="19.39%"/>
</listitem>

<listitem draggable="true" droppable="true" onDrop="move (event.dragged) ">

<listcell label="China"/>

<listcell label="4,274"/>

<listcell label="16.27%"/>
</listitem>

<listitem draggable="true" droppable="true" onDrop="move (event.dragged) ">

<listcell label="France"/>

<listcell label="1,892"/>

<listcell label="7.20%"/>
</listitem>

<listitem draggable="true" droppable="true" onDrop="move (event.dragged) ">

<listcell label="Germany"/>

<listcell label="1,846"/>

<listcell label="7.03%"/>
</listitem>

<listitem draggable="true" droppable="true" onDrop="move (event.dragged) ">

<listcell label=" (other)"/>
<listcell label="13,162"/>
<listcell label="50.01%"/>
</listitem>
<listfoot>
<listfooter label="Total 132"/>
<listfooter label="26,267"/>
<listfooter label="100.00%"/>
</listfoot>
</listbox>
<zscript>
void move (Component dragged) {

ZK: Developer's Guide Page 137 of 211

Potix Corporation

self.parent.insertBefore (dragged, self);

}
</zscript>
</window>

Multiple Types of Draggable Components

It is common that a droppable component doesn't accept all draggable components. For
example, an e-mail folder accepts only e-mails and it rejects contacts or others. You could
silently ignore non-acceptable components or alert an message, when onbDrop is invoked.

To have better visual effect, you could identify each type of draggable components with an

identifier, and then assign the identifier to the draggable property.

<listitem draggable="email"/>

<listitem draggable="contact"/>

Then, you could specify a list of identifiers to the droppable property to limit what can be

dropped. For example, the following image accepts only email and contact.

|<image src="/img/send.png" droppable="email, contact" onDrop="send (event.dragged)"/>

To accept any kind of draggable components, you could specify "true" to the droppable

property. For example, the following image accepts any kind of draggable components.

|<image src="/img/trash.png" droppable="true" onDrop="remove (event.dragged)"/>

On the other hand, if the draggable property is "true", it means the component belongs to
anonymous type. Furthermore, only components with the droppable property assigned to

"true" could accept it.

HTML Relevant Components

There are several ways to use HTML components with XUL components in the same ZUML page.

The style Component

The style component is used to specify CSS styles in a ZUML page. The simplest format is

as follows.
<style>
.blue {

}
</style>

ZK: Developer's Guide

color: white; background-color:

blue;

<button label="OK" sclass="blue"/>

Page 138 of 211

Potix Corporation

Tip: To configure a style sheet for the whole application, specify theme-uri in zk.xml,
refer to Appendix B in the Developer's Reference for details. To configure a style
sheet for a language, use the language addon, refer to the Component Development
Guide.

Sometimes it is better to store all CSS definitions in an independent file, say my.css. Then,
we could reference it by use of the style component as follows.

|<style src="/my.css"/>

The above statement actually sends the following HTML tags® to the browser, so the
specified file must be accessible by the browser.

|<link rel="stylesheet" href="/css/mystyles.css"/> |
In other words, you cannot specify "/WEB-INF/xx" or "C:/xx/yy".

Like other URI, it accepts "*" for loading browser and Locale dependent style sheet. Refer to
the Browser and Locale Dependent URI section in the Internationalization chapter for
details.

The html Component

The simplest way is to use a XUL component called html. The content property of a html
component contains a piece of HTML tags, which will be rendered directly to the browser.

<html>
<attribute name="content"><! [CDATA|[
<h4>Hello World!</h4>
<p>Say hello to the whole world.</p>
]1></attribute>
</html>

Mix the HTML and XUL Components

With the XML namespace, developers could mix the use of components from HTML and XUL
as depicted as follows.

<window title="mix HTML demo" xmlns:h="http://www.w3.0rg/1999/xhtml">
<h:table border="1">

<hitr>
<h:td>column 1</h:td>
column 1| 44 %
<h:td>

<listbox id="1list" mold="select">
<listitem label="AA"/>
<listitem label="BB"/>
</listbox>
</h:td>
</h:tr>

39 The real result depends on how your Web application is configured.

ZK: Developer's Guide Page 139 of 211 Potix Corporation

file:///c:/xx/yy

</h:table>
</window>
The include Component

The include component is used to include the output generated by another servlet. The
servlet could be anything including JSF, JSP and even another ZUML page.

<window title="include demo" border="normal" width="300px">
Hello, World!
<include src="/userguide/misc/includedHello.zul"/>
<include src="/html/frag.html"/>

</window>

Like all other properties, you could dynamically change the src attribute to include the
output from a different servlet at the run time.

If the included output is another ZUML, developers are allowed to access components in the
included page as if they are part of the containing page.

Including ZUML Pages

If the include component is used to include a ZUML page, the included page will become
part of the desktop. However, the included page is not visible until the request is
processed completely. In other words, it is visible only in the following events, triggered
by user or timer.

The reason is that the include component includes a page as late as the Rendering
phase*’. On the other hand, zscript takes place at the Component Creation phase, and
onCreate takes place at the Event Processing Phase. They both execute before the

inclusion.
<window onCreate="desktop.getPages()"> <!-- the included page not available -->
<include src="/my.zul"/>
<zscript>
desktop.getPages(); //the included page not available yet
</zscript>
<button label="Hit" onClick="desktop.getPages()"/>
<!-- Yes, the included page is available when onClick is received -->
</window>

If you want to look into the component of an included page, macro components are
usually a better option. Refer to the Macro Components section in the ZK User
Interface Markup Language chapter.

The iframe Component

The iframe component uses the HTML IFRAME tag to delegate a portion of the display to

40 Refer to the Component Lifecycle chapter for more details.

ZK: Developer's Guide Page 140 of 211 Potix Corporation

another URL. Though the appearance looks similar to the include component. The concept
and meaning of the iframe component is different.

The content included by the include component is a fragment of the whole HTML page.
Because the content is part of the HTML page, the content is part of the desktop and you
could access any components, if any, inside of the include component. The inclusion is
done at the server, and the browser knows nothing about it. It means the URL specified by
the src property could be any internal resource.

The content of the iframe component is loaded by the browser as a separate page. Because
it is loaded as a separate page, the format of the content could be different from HTML. For
example, you could embed an PDF file.

<iframe src="/my.pdf"/>
...other HTML content

Tip: By default, there is no border. To enable it, use the style attribute to specify it. For
example,

<iframe style="border:lpx inset" src="http://www.zkoss.org"/>

The embedding is done by the browser, when it interprets the HTML page containing the
IFRAME tag. It also implies that the URL must be a resource that you can access from the
browser.

Like the image and audio components*', you could specify the dynamically generated
content. A typical example is you could use JasperReport*? to generate a PDF report in a
binary array or stream, and then pass the report to an iframe component by wrapping the
result with the org.zkoss.util.media.AMedia class.

In the following example, we illustrate that you could embed any content by use of iframe,
as long as the client supports its format.

<window title="iframe demo" border="normal">
<iframe id="iframe" width="95%"/>
<separator bar="true"/>
<button label="Upload">
<attribute name="onClick">{
Object media = Fileupload.get();
if (media != null)
iframe.setContent (media) ;
}</attribute>
</button>
</window>

41 In many ways, iframe is much similar to image and audio. You might consider it as a component for
arbitrary content.
42 http://jasperreports.sourceforge.net

ZK: Developer's Guide Page 141 of 211 Potix Corporation

This picture depicted

the appearance after
user uploaded an
Microsoft PowerPoint

7K — Technology Summary file.

Work with HTML FORM and Java Servlets

The event-driven model is simple and powerful, but it might not be practical to rewrite all servlets
to replace with event listeners.

The name Property

To work with legacy Web applications, you could specify the name property as you did for
HTML pages. For example,

[| when 2006/03/01 |[q MName |Bill Gates Department ||Manufactory A 7]

<window xmlns:h="http://www.w3.0rg/1999/xhtmli">
<h:form method="post" action="/my-old-servlet">
<grid>
<rows>
<row>When <datebox name="when"/> Name <textbox name="name"/> Department
<combobox name="department">
<comboitem label="RD"/>
<comboitem label="Manufactory"/>
<comboitem label="Logistics"/>
</combobox>
</row>
<row>
<h:input type="submit" value="Submit"/>
</row>
</rows>
</grid>
</h:form>
</window>

Once users press the submit button, a request is posted to the my-old-servlet servlet with
the query string as follows.

ZK: Developer's Guide Page 142 of 211 Potix Corporation

http://www.w3.org/1999/xhtml

|/my—old—servlet?when=2006%2F03%2FOl&namezBill+Gates&departmentzManufactory |

Thus, as long as you maintain the proper associations between name and value, your servlet
could work as usual without any modification.

Components that Support the name Property

All input-types components support the name property, such as textbox, datebox,

decimalbox, intbox, combobox and bandbox.

In addition, list boxes and tree controls are also support the name property. If the multiple
property is true and users select multiple items, then multiple name/value pairs are posted.

<listbox name="who" multiple="true" width="200px">

<listhead>
<listheader label="name"/>
<listheader label="gender"/>

</listhead>

<listitem value="mary>
<listcell label="Mary"/>
<listcell label="FEMALE"/>

</listitem>

<listitem value="john">
<listcell label="John"/>
<listcell label="MALE"/>

</listitem>

<listitem value="jane">
<listcell label="Jane"/>
<listcell label="FEMALE"/>

</listitem>

<listitem value="henry">

, name gender
<listcell label="Henry"/> Mary FEMALE
<listcell label="MALE"/> John MALE

</listitem> Jane FEMALE
</listbox>

If both John and Henry are selected, then the query string will contain:

|who=john&who=henry |

Notice that, to use list boxes and tree controls with the name property, you have to specify
the value property for listitem and treeitem, respectively. They are the values being
posted to the servlets.

Rich User Interfaces

Because a form component could contain any kind of components, the rich user interfaces
could be implemented independent of the existent servlets. For example, you could listen to
the onOpen event and fulfill a tab panel as illustrated in the previous sections. Yet another
example, you could dynamically add more rows to a grid control, where each row might

ZK: Developer's Guide Page 143 of 211 Potix Corporation

control input boxes with the name property. Once user submits the form, the most updated
content will be posted to the servlet.

Client Side Actions

Some behaviors are better to be done at the client side with JavaScript codes, such as animations
and image rollovers. In order to execute JavaScript codes at the client, ZK introduces the concept
of Client Side Actions (CSA). With CSA, developers could listen to any JavaScript event and
executes JavaScript codes at the client.

A CSA is similar to an event listener, except an action is is written in JavaScript and executes at
the client. ZK allows developers to specify actions for any JavaScript events, such as onfocus,
onblur, onmouseover and onmouseout, as long as your targeting browsers support them.

The syntax of a client-side action is as follows.

|action="[onfocus\onblurlonmouseoverlonmouseout\onclick\onshowlonhide...]: javascript;" |

Notice that CSA is totally independent of ZK event listeners, though they might have the same
name, such as onFocus. The differences include:

+ CSA executes at the client side and takes place, before ZK event listener is called at the
server.

+ CSA codes are written in JavaScript, while ZK event listeners are written in Java.

« CSA could register to any event that your targeting browsers allow, while ZK supports
events only list in the Events section.

Reference to a Component

In the JavaScript codes, you can reference to a component or other objects with an EL
expression, starting with #{ and ending with }.

|<button action="onmouseover: action.show (#{parent.tip})"/> |

Notice that #{} is used since the evaluation of EL expression shall be as late as the
Rendering Phase. On the other hand, if you assign an EL expression starting with $¢{, it will
be evaluated at the Component Creation Phase, before assigning to the action property. For
example,

<button action="onfocus: action.show(${tip}); onblur: action.hide(${tip})"/>
<div id="tip" visible="false">...</div>

will be evaluated to

<button action="onfocus: action.show(); onblur: action.hide()"/>
<div id="tip" visible="false">...</div>

ZK: Developer's Guide Page 144 of 211 Potix Corporation

since the tip component is not created when assigning the action property.

Even if the referenced component was created before action is assigned, it is still incorrect,
since the ZUML loader has no knowledge of CSA, and it converts the component to a string
by invoking the tostring method.

Of course, it doesn't prevent you from using s${} in an action, as depicted below. Just
remember it is evaluated before assigning the action property.

<variables myaction="onfocus: action.show(#{tip}); onblur: action.hide (#{tip});"
<button action="${myaction} onmouseover: action.show (#{parent.parent.tip})"/>

An onfocus and onblur Example

In the following example, we demonstrated how to use client-side actions to provide on-
line help. When user change the focus to any of the text boxes, a help message is
displayed accordingly.

<grid>
<columns> textl: This is help for textl.
<column/> text?:
<column/>
<column/>
</columns>
<rows>
<row>
<label value="textl: "/>
<textbox action="onfocus: action.show (#{helpl}); onblur: action.hide (#{helpl})"/>
<label id="helpl" visible="false" value="This is help for textl."/>
</row>
<row>
<label value="text2: "/>
<textbox action="onfocus: action.show (#{help2}); onblur: action.hide (#{help2})"/>
<label id="help2" visible="false" value="This is help for text2."/>
</row>
</rows>
</grid>

Coercion Rules

A ZUL component actually converts an EL expression (#{}) to proper JavaScript codes
based on the class of the result object.

1. If result is null, it is replaced with nul1l.

2. If result is a component, it is replaced with $e ('uuid'), where $e is a JavaScript
function to return a reference to a HTML tag and uuid is the component's UUID.

3. Ifresult is a Date object, it is replaced with new Date (milliseconds).

4. Otherwise, the result is converted to a string by calling the tostring method, and

ZK: Developer's Guide Page 145 of 211 Potix Corporation

then replaced with 'result in string’.

The onshow and onhide Actions

The onshow and onhide actions are available only for window and div components. They are
used to let developers control the visual effect of displaying and hiding a component.

An Example to Change How a Window Appears

<zk>
<button label="Show Popup" onClick="win.doPopup();"/>
<window id="win" border="normal" width="200px" mode="popup"
action="onshow:anima.appear (#{self});onhide:anima.fade (#{self})" visible="false">
<caption image="/img/inet.png" label="Hi there!"/>
<checkbox label="Hello, Effect!"/>
</window>
</zk>

CSA JavaScript Utilities

To simplify the CSA programming, ZK provides a few utilities objects that you can utilize.

The action Object

Basic utilities that can be applied to any object.

Function Description
action.show (cmp) Make a component visible.

cmp — the component. Use #{EL-expr} to identify it.

action.hide (cmp) Make a component invisible.

cmp — the component. Use #{EL-expr} to identify it.

Tip: For JavaScript programmers, it is common to manipulate style.display directly for
visibility. However, it is not a good idea. Rather, use action.show and action.hide
instead, since ZK Client Engine has to handle visual effects, bug workaround, and so on.

The anima Object

Animation-like visual effects. It is based on the Effect class provided by script.aculo.us®.

The API is simplified. If you'd like more visual effects or controls, you can access Effect
directly.

Note: Effect requires the component to be structured with nested piv tag. Currently,
only window components are in this structure. To apply to other components, you have to

43 http://script.aculo.us provides easy-to-use, cross-browser user interface JavaScript libraries

ZK: Developer's Guide Page 146 of 211 Potix Corporation

http://wiki.script.aculo.us/scriptaculous/show/VisualEffects
http://wiki.script.aculo.us/scriptaculous/show/VisualEffects
http://script.aculo.us/
http://wiki.script.aculo.us/scriptaculous/show/VisualEffects
http://script.aculo.us/

nest it with the div component as follows.

<window>

<div id="t"

visible="false"

action="onshow: anima.slideDown (#{self}); onhide: anima.slideUp (#{self})">
<div><!-- the 2nd div is optional but sometimes it looks better with it -->
<groupbox>

<caption label="slide down"/>

Hi <textbox/>
</groupbox>
When? <datebox/>

</div>
</div>

<button label="toggle" onClick="t.visible =

</window>

't.visible"/>

Of course, you load other libraries that do not have this limitation.

Function

Description

anima.
anima.

appear (cmp)

appear (cmp, dur)

Make a component visible by increasing the opacity.

cmp — the component. Use #{EL-expr} to identify it.
dur - the duration in milliseconds. Default: 800.

anima.slideDown (cmp) Make a component visible with the slide-down effect.
anima.slideDown (cmp, dur)

cmp — the component. Use #{EL-expr} to identify it.

dur - the duration in milliseconds. Default: 400.
anima.slideUp (cmp) Make a component invisible with the slide-up effect.
anima.slideUp (cmp, dur)

cmp — the component. Use #{EL-expr} to identify it.

dur - the duration in milliseconds. Default: 400.
anima. fade (cmp) Make a component invisible by fading it out.
anima.fade (cmp, dur)

cmp — the component. Use #{EL-expr} to identify it.

dur - the duration in milliseconds. Default: 550.
anima.puff (cmp) Make a component invisible by puffing it out.
anima.puff (cmp, dur)

cmp — the component. Use #{EL-expr} to identify it.

dur - the duration in milliseconds. Default: 700.
anima.dropOut (cmp) Make a component invisible by fading and dropping it
anima.dropOut (cmp, dur) out.

cmp — the component. Use #{EL-expr} to identify it.
dur - the duration in milliseconds. Default: 700.

For example,

ZK: Developer's Guide

Page 147 of 211

Potix Corporation

<window title="Animation Effects">
<style>
.ctl {
border: lpx outset #777; background:#ddeecc;
margin: 2px; margin-right: 10px; padding-left: 2px; padding-right: 2px;

</style>

<label value="Slide" sclass="ctl"

action="onmouseover: anima.slideDown (#{t}); onmouseout: anima.slideUp (#{t})"/>
<label value="Fade" sclass="ctl"

action="onmouseover: anima.appear (#{t}); onmouseout: anima.fade (#{t})"/>
<label value="Puff" sclass="ctl"

action="onmouseover: anima.appear (#{t}); onmouseout: anima.puff (#{t})"/>
<label value="Drop Out" sclass="ctl"

action="onmouseover: anima.appear (#{t}); onmouseout: anima.dropOut (#{t})"/>

<div id="t" visible="false">
<div>
<groupbox>
<caption label="Dynamic Content"/>
Content to show and hide dynamically.
<datebox/>
</groupbox>
Description <textbox/>
</div>
</div>
</window>

Events

Notice that whether an event is supported depends on a component. In addition, an event is sent
after the component's content is updated.

Mouse Events

Event Name Components/Description

onClick button caption column div groupbox image imagemap label
listcell listfooter listheader menuitem tabpanel toolbar
toolbarbutton treecell treecol window

Event: org.zkoss.zk.ui.event.MouseEvent

Denotes user has clicked the component.

ZK: Developer's Guide Page 148 of 211 Potix Corporation

Event Name Components/Description

onRightClick button caption checkbox column div groupbox image imagemap
label listcell listfooter listheader listitem radio slider tab
tabbox tabpanel toolbar toolbarbutton treecell treecol
treeitem window

Event: org.zkoss.zk.ui.event.MouseEvent

Denotes user has right-clicked the component.

onDoubleClick |caption column div groupbox image label listcell listfooter
listheader listitem tab tabpanel toolbar treecell treecol
treeitem window

Event: org.zkoss.zk.ui.event.MouseEvent

Denotes user has double-clicked the component.

Keystroke Events

Event Name Components Description

onOK window Event: org.zkoss.zk.ui.event.KeyEvent

Denotes user has pressed the ENTER key.

onCancel window Event: org.zkoss.zk.ui.event.KeyEvent

Denotes user has pressed the EsC key.

onCtrlKey window Event: org.zkoss.zk.ui.event.KeyEvent

Denotes user has pressed a special key, such as PgUp,
Home and a key combined with the ctrl or a1t key.
Refer to the ctrlKeys Property section below for
details.

The keystroke events are sent to the nearest window that has registered an event listener
for the specified events. It is designed to implement the submit, cancel and shortcut
functions.

As illustrated below, doa () is invoked if user pressed ENTER when T1 got the focus, and
doB () is invoked if user pressed ENTER when T2 got the focus.

<window id="A" onOK="doA () ">
<window id="B" onOK="doB () ">
<textbox id="T1"/>
</window>
<textbox id="T2"/>
</window

Notice that a window doesn't receive the keystroke events that are sent for the inner
window, unless you post them manually. In the above example, the event won't be sent to
window A, if T1 got the focus, no matter whether the onOK handler is declared for window B

ZK: Developer's Guide Page 149 of 211 Potix Corporation

or not.

The ctrlKeys Property

To receive the onCtrlKey event, you must specify what key strokes to intercept by the
ctrlKeys property. In other words, only key strokes specified in the ctrlKeys property is
sent back to the server. For example, the onCtrlKey event is sent if an user clicks Al1t+cC,
Ctrl+A, F10, OFr Ctrl+F3.

<window ctrlKeys="@c"a#10"#3">

The following is the syntax of th ctrlKeys property.

Key Description
~k A control key, i.e., ctrl+k, where k could be a~z, 0~9, #n and ~n.
@k A alt key, i.e., Al1t+k, where k could be a~z, 0~9, #n and ~n.
Sk A shift key, i.e., shift+k, where k could be #n and ~n.
#n A special key as follows.

#home Home #end End #ins

#del Delete #left - #right

#up 1 #down ! #pgup

#pgdn PgDn

#fn A function key. #£f1, #f2, ... #f12 for r1, F2,... F12.

Input Events

Event Name Components Description

onChange textbox Event: org.zkoss.zk.ui.event.InputEvent
datebox
decimalbox Denotes the content of an input component has been
intbox modified by the user.
combobox
bandbox

onChanging textbox Event: org.zkoss.zk.ui.event.InputEvent
datebox
decimalbox Denotes that user is changing the content of an input
intbox component. Notice that the component's content (at the
combobox server) won't be changed until onChange is received.
bandbox Thus, you have to invoke the getvalue method in the

InputEvent class to retrieve the temporary value.

ZK: Developer's Guide

Page 150 of 211

Potix Corporation

Event Name

Components

Description

onFocus textbox Event: org.zkoss.zk.ui.event.Event
datebox
decimalbox Denotes when a component gets the focus.
intbox .
Remember event listeners execute at the server, so the
combobox))
bandbox focus at the client might be changed when the event
button listener for onFocus got executed.
toolbarbutton
checkbox
radio
onBlur textbox Event: org.zkoss.zk.ui.event.Event
datebox
decimalbox Denotes when a component loses the focus.
intbox .
Remember event listeners execute at the server, so the
combobox))
bandbox focus at the client might be changed when the event
button listener for onBlur got executed.
toolbarbutton
checkbox
radio

List and Tree Events

Event Name Components Description
onSelect listbox Event: org.zkoss.zk.ui.event.SelectEvent
tabbox
tree Denotes user has selected one or multiple child
components. For 1istbox, it is a set of 1istitem. For
tree, it is a set of treeitem. For tabbox, it is a tab.
onOpen groupbox Event: org.zkoss.zk.ui.event.OpenEvent
treeitem
combobox Denotes user has opened or closed a component. Note:
bandbox unlike onClose, this event is only a notification. The
menupopup client sends this event after opening or closing the
window

component.

It is useful to implement /oad-on-demand by listening to
the onOpen event, and creating components when the
first time the component is opened.

ZK: Developer's Guide

Page 151 of 211 Potix Corporation

Slider and Scroll Events

Event Name

Components

Description

onScroll

slider

Event: org.zkoss.zk.ui.event.ScrollEvent

Denotes the content of a scrollable component has been
scrolled by the user.

onScrolling

slider

Event: org.zkoss.zk.ui.event.ScrollEvent

Denotes that user is scrolling a scrollable component.
Notice that the component's content (at the server)
won't be changed until onScroll is received. Thus, you
have to invoke the getpPos method in the ScrollEvent
class to retrieve the temporary position.

Other Events

Event Name

Components

Description

onCreate

all

Event: org.zkoss.ui.zk.ui.event.CreateEvent

Denotes a component is created when rendering a ZUML
page. Refer to the Component Lifecycle chapter.

onClose

window
tab

Event: org.zkoss.ui.zk.ui.event.Event

Denotes the close button is pressed by an user, and the
component shall detach itself.

onDrop

all

Event: org.zkoss.ui.zk.ui.event.DropEvent

Denotes another component is dropped to the
component that receives this event. Refer to the Drag
and Drop section.

onCheck

checkbox
radio
radiogroup

Event: org.zkoss.zk.ui.event.CheckEvent

Denotes the state of a component has been changed by
the user.

onMove

window

Event: org.zkoss.zk.ui.event.MoveEvent

Denotes a component has been moved by the user.

onSize

window

Event: org.zkoss.zk.ui.event.SizeEvent

Denotes a component has been resized by the user.

onZIndex

window

Event: org.zkoss.zk.ui.event.ZIndexEvent

Denotes the z-index of a component has been changed
by the user.

onTimer

timer

Event: org.zkoss.zk.ui.event.Event

ZK: Developer's Guide

Page 152 of 211 Potix Corporation

Event Name Components Description

Denotes the timer you specified has triggered an event.
To know which timer, invoke the getTarget method in
the Event class.

onNotify any Event: org.zkoss.zk.ui.event.Event

Denotes a application-dependent event. Its meaning
depends on applications. Currently, no component will
send this event.

onClientInfo |root Event: org.zkoss.zk.ui.event.ClientInfoEvent

Notifies root components about the client's information,
such as time zone and resolutions.

onColSize columns Event: org.zkoss.zul.event.ColSizeEvent
listhead
treecols Notifies the parent of a group of headers that the widths
of two of its children are changed by the user.
onPaging grid Event: org.zkoss.zul.event.PagingEvent
listbox
paging Notifies one of the pages of a multi-page component is

selected by the user.

The Event Flow of radio and radiogroup

For developer's convenience, the onCheck event is sent to raido first and then to
radiogroup*. Thus, you could add listener either to the radio group or to each radio
button.

<radiogroup onCheck="fruit.value = self.selectedItem.label">
<radio label="Apple"/>
<radio label="Orange"/>

</radiogroup>

You have selected : <label id="fruit"/>

The above sample has the same effect as follows.

<radiogroup>
<radio label="Apple" onCheck="fruit.value = self.label"/>
<radio label="Orange" onCheck="fruit.value = self.label"/>
</radiogroup>

You have selected : <label id="fruit"/>

44 The internal implementation is done by adding a listener when a radio is added to a radiogroup.

ZK: Developer's Guide Page 153 of 211 Potix Corporation

8. ZUML with the XHTML Component Set

This chapter describes the set of XHTML components.

The Goal

The introduction of the XHTML component set is aimed to make it easy to port existent Web pages
to ZUML. The ultima goal is that all valid XHTML pages are valid ZUML pages. All servlets handling
the submitted form work as usual.

Therefore, existent XHTML pages could share the most powerful advantage that ZUML pages have:
rich user interfaces. The richness could be achieved in two ways. First, you could embed Java
codes to manipulate XHTML components dynamically. Second, you could add off-of-shelf XUL
components into existent pages, just like you add XHTML into XUL pages.

A XHTML Page Is A Valid ZUML Page

The Web page illustrated below is a simple but typical example.

<html>
<head>
<title>ZHTML Demo</title>
</head>
<body>
<h1>ZHTML Demo</h1>
<ul id="ul">
The first item.</1li>
<1i>The second item.</1i>

<input type="button" value="Add Item""/>

<input id="inpO" type="text"/> +
<input id="inpl" type="text"/> =
<text id="out"/>
</body>
</html>

By naming it with the zhtml extension®®, it will be interpreted as a ZUML page by ZK loader.
Then, instances of org.zkoss.zhtml.Html, org.zkoss.zhtml.Head and others are created
accordingly. In other words, we created a tree of XHTML components at the server. Then, ZK
renders them into a regular XHTML page and sends it back to the browser, like what we did
for any ZUML pages.

45 If you want every HTML pages to be ZUML pages, you could map the .html extension to
DHtmlILayoutServlet. Refer to Appendix A in the Developer's Reference for details.

ZK: Developer's Guide Page 154 of 211 Potix Corporation

Server-Centric Interactivity

As being a ZUML page, it could embed any Java codes and execute them in the server as
follows.

<html xmlns:zk="http://www.zkoss.org/2005/zk">
<head>
<title>ZHTML Demo</title>
</head>
<body>
<h1>ZHTML Demo</h1>
<ul id="ul">
<1i>The first item.</1i>
<1i>The second item.</1i>

<input type="button" value="Add Item" zk:onClick="addItem()"/>

<input id="inpO" type="text" zk:onChange="add()"/> +
<input id="inpl" type="text" zk:onChange="add()"/> =
<text id="out"/>
<zscript>
void addItem() {
Component 1i = new Raw("1i");
li.setParent (ul);
new Text ("Item "+ul.getChildren().size()) .setParent (1li);
}
void add() {
out.setValue (inp0O.getValue () + inpl.getValue());
}
</zscript>
</body>
</html>

In the above example, we use the ZK namespace to specify the onClick property. It is
necessary because XHTML itself has a property with the same name.

It is interesting to note that all Java codes are running at the server. Thus, unlike JavaScript
you are used to embed in HTML pages, you could access any resource at the server directly.

For example, you could open a connection to a database and retrieve the data to fill in
certain components.

<zscript>

import java.sqgl.*;

volid addItem() {
Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver") ;
String url = "jdbc:odbc:Fred";

Connection conn = DriverManager.getConnection (url,"myLogin", "myPassword");

conn.close () ;

}

</zscript>

ZK: Developer's Guide Page 155 of 211 Potix Corporation

Serviets Work As Usual

In traditional Web applications, a XHTML page usually submits a form to a specific servlet for
processing. You don't need to modify them to port the page to ZK.

The Differences

Besides being ZK components, the implementation of the XHTML component set has some
differences from other component sets*, such that it would be easier to port traditional XHTML
pages to ZK.

UUID Is ID

Traditional servlets and JavaScript codes usually depend on the id attribute, so UUID of
XHTML components are made to be the same as ID. Therefore, developers need not to
change their existent codes to adapt ZK, as shown below.

<script><!-- JavaScript and running at the browser -->
function change() {
var el = document.getElementById("which");

el.src = "something.gif";
}
</script>
<zscript><!-- Java and running at the server -->

void change () {
which.src = "another.gif";
}
</zscript>

Notice that UUID is immutable and nothing to do with ID for components other than XHTML.
Thus, the above example will fail if XUL components are used. If you really want to reference
a XUL component in JavaScript, you have to use EL expression to get the correct UUID.

<input id="which"/>

<script>

var el = document.getElementById ("${which.uuid}");
</script>

Side Effects

Since UUID is ID, you cannot use the same ID for any two components in the same
desktop.

46 These differences are made by implementing particular interfaces, so you could apply similar effects to
your own components if you like.

ZK: Developer's Guide Page 156 of 211 Potix Corporation

All Tags Are Valid

Unlike XUL or other component sets, there is no invalid XML element in the XHTML
component set. ZK uses the org.zkoss.zhtml.Raw class for constructing any unrecognized
XML element*’. Therefore, developers could use any tags that the target browser supports,
no matter whether they are implemented as ZK components.

Similarly, you could use the raw component to create any component not defined in the
XHTML component set as follows.

|new Raw ("object"); //object could be any tag name the target browser supports |

Case Insensitive

Unlike XUL or other component sets, the component name of XHTML is case-insensitive. The
following XML elements are all mapped to the org.zkoss.zhtml.Br component.

No Mold Support

XHTML components outputs its content directly. They don't support molds. In other words,
the mold property is ignored.

The DOM Tree at the Browser

After porting XHMTL pages to ZK, you don't need to manipulate the DOM tree at the browser with
JavaScript, though ZK doesn't prevent you from doing that. Rather, you manipulate XHTML
components at the server, and then ZK engines updates the DOM tree at the browser for you.

It is convenient but there is a catch. ZK assumes the DOM tree at the browser is the same as the
component tree at the server. In most cases, it is true. However, it is not always true.

The TABLE and TBODY Tags

The browser always creates TBODY between TABLE and TR. Thus, the following two tables
have the same structure.

<table>
<tr><td>Hi</td></tr>
</table>
<table>
<tbody>
<tr><td>Hi</td></tr>

47 Note: this is done by implementing the org. zkoss.zk.ui.ext.DynamicTag interface.

ZK: Developer's Guide Page 157 of 211 Potix Corporation

</tbody>
</table>

Unfortunately, their component trees are not the same in ZK. Thus, if you want to
dynamically manipulate a table, you have to declare TBODY between TABLE and TR. Of
course, you don't need to worry this for static tables.

Events

All XHTML components support the following events, but whether it is applicable still depends on
the browsers. For example, onChange is meaningless to non-input components, say body and div.
You have to consult the HTML standard*®

Event Name Components Description

onChange all Event: org.zkoss.zk.ui.event.InputEvent

Denotes the content of an input component has been
modified by the user.

onClick all Event: org.zkoss.zk.ui.event.MouseEvent

Denotes user has clicked the component.

Integrate with JSF, JSP and Others

When integrating with existent Web pages, you might have to ask yourself a few questions.

Is the existent page static or dynamically generated?

Is it a minor enhancement, if you want to enrich an existent page? Or, you prefer to
rewrite a portion of it?

Do you prefer to use XUL or XHTML as the default component set when adding a new page?

Depending your requirements, there are several approaches to take.

Work with Existent Servlets

By use of the form component, you could post a request to an existent servlet. Refer to the
Work with HTML FORM and Java Servlets section in the ZUML with the XUL
Component Set chapter for details.

Because the form component might contain any components, you could design rich user
interfaces without modifying the existent servlet.

48 http/www.w3c.org

ZK: Developer's Guide Page 158 of 211 Potix Corporation

Enrich by Inclusion

If you prefer to rewrite a portion of an existent page, it might be better to put the rewritten
portion in a separate ZUML file. Then, you include the ZUML file from the existent page. For
example, you could use jsp:include if JSP technology is used.

|<jsp:include page="/my/ria.zul"/> |

Enrich a Static HTML Page

If you prefer to modify a static HTML page directly by adding the rich content, you could
rename it to have the zhtml extension. Then, ZK loader is responsible to load the page, and
then you could enrich with ZK.

Enrich a Dynamically Generated Page

If you prefer to modify a dynamically generated HTML page (e.g., the output of a JSP page),
you could map the DHtmlLayoutFilter to process the generated page. Here is a sample (a
part of web.xml).

<filter>
<filter-name>zkFilter</filter-name>
<filter-class>org.zkoss.zk.ui.http.DHtmlLayoutFilter</filter-class>
<init-param>
<param-name>extension</param-name>
<param-value>html</param-value>
</init-param>
</filter>
<filter-mapping>
<filter-name>zkFilter</filter-name>
<url-pattern>/my/dyna.jsp</url-pattern>
</filter-mapping>
<filter-mapping>
<filter-name>zkFilter</filter-name>
<url-pattern>/my/dyna/*</url-pattern>
</filter-mapping>

Notice that, if you want to filter the output from include and/or forward, remember to specify
the dispatcher element with REQUEST and/or INCLUDE. Consult the Java Servlet
Specification for details. For example,

<filter-mapping>
<filter-name>zkFilter</filter-name>
<url-pattern>/my/dyna/*</url-pattern>
<dispatcher>REQUEST</dispatcher>
<dispatcher>INCLUDE</dispatcher>
<dispatcher>FORWARD</dispatcher>
<dispatcher>ERROR</dispatcher>

</filter-mapping>

ZK: Developer's Guide Page 159 of 211 Potix Corporation

XUL or XHTML
There is no straight answer here. It depends your preferences.

However, a rule of thumb might be whether you want to write the HTML, HEAD and BODY
tags to control the overall look of a page. If yes, use XHTML as the default hamespace (by
naming the file with the zhtml extension). If no, use XUL as the default namespace (by
naming the file with the zul extension).

Remember that you could mix different component sets in the same page by use of the XML
namespace to separate them. Moreover, the namespace for the empty prefix is independent
of the extension you choose. For example, the following statements are valid no matter what
extension you use.

<window xmlns="http://www.zkoss.org/2005/zul"
xmlns:h="http://www.w3.0rg/1999/xhtml">
<h:table>

It is equivalent to the following.

<x:window xmlns:x="http://www.zkoss.org/2005/zul"
xmlns="http://www.w3.0rg/1999/xhtml">
<table>

ZK: Developer's Guide Page 160 of 211 Potix Corporation

http://www.potix.com/2005/zul
http://www.potix.com/2005/zul

9. Macro Components

There are two ways to implement a component. One is to implement a class deriving from the
org.zkoss.zk.ui.AbstractComponent class. The other is to implement it by use of other
components.

The former one is more flexible. It requires deeper understanding of ZK, so it is usually done by
component developers. It is discussed in the Component Development Guide.

On the other hand, implementing a new component by use of other components is
straightforward. It works like composition, macro expansion, or inline replacement. For sake of
convenience, we call this kind of components as macro components., while the others are called
native components.

Tip: a macro component is no different from a native component from application
developer's viewpoint, except how it is implemented.

Three Steps to Use Macro Components

It takes three steps to use macro components as follows.
1. Implements a macro component by a ZUML page.
2. Declare the macro component in the page that is going to use it.

3. Use the macro components, which is no difference that other components.

Tip: In addition to define a macro component in page, you can put its definition into a
language addon such all pages are able to access the macro component.

Step 1. The Implementation

All you need to do is to prepare a ZUML page that describes what the component consists of.
In other words, the page is a template of the macro.

For example, assume we want to pack a label and a text box as a macro component. Then
we could create page, say /WEB-INF/macros/username.zul, as follows.

<hbox>
Username: <textbox/>
</hbox>

It is done!

The ZUML page implementing a macro component is the same as any other pages, so any
ZUML page can be used as a macro component.

ZK: Developer's Guide Page 161 of 211 Potix Corporation

Step 2. The Declaration

Before instantiating a macro component, you have to declare first. One of simplest way to
declare is to use the component directives.

|<?component name="username" macro-uri="/WEB-INF/macros/username.zul"?> |

As shown, you have to declare the name (the name attribute) and the URI of the page (the
macro-uri attribute).

Other Properties

In additions to the name, macro-uri and class*® attributes, you can specify a list of initial
properties that will be used to initialize a component when it is instantiated.

<?component name="mycomp" macro-uri="/macros/mycomp.zul"

myprop="myval" another="anotherval"?>

Therefore,

|<mycomp/> |

is equivalent to

|<mycomp myprop="myvall" another="anotherval"/> |

Step 3. The Use

The use of a macro component is no different than others.

<window>
<username/>
</window>

Pass Properties

Like an ordinary component, you can specify properties (aka., attributes) when using a
macro component as follows.

<?component name="username" macro-uri="/WEB-INF/macros/username.zul"?>
<window>

<username who="John"/>
</window>

All these properties specified are stored in a map that is then passed to the template via a
variable called arg. Then, in the template, you could access these properties as follows.

<hbox>
Username: <textbox value="${arg.who}"/>
</hbox>

49 The class attribute will be discussed later.

ZK: Developer's Guide Page 162 of 211 Potix Corporation

Note: arg is available only when rendering the macro page. To access in the event
listener, you have to use getDynamicProperty instead. Refer to the Provide Additional
Methods section for more details.

arg.includer

In additions to the specified properties (aka., attributes), a property called arg.includer
is always passed to represent the parent of the components defined in a macro template.

If a regular macro is created, arg.includer is the macro component itself. If an inline
macro is created, arg.includer is the parent component, if any. Refer to the Inline
Macros section for more information.

In the above example, arg.includer represents the regular macro component,
<username who="John"/>, and is the parent of <hbox> (defined in username.zul).

Inline Macros

There are two kinds of macro components: inline®® and regular. By default, regular macros are
assumed. To specify inline macros, you have to specify inline="true" in the component
directive.

An inline macro behaves like inline-expansion. ZK doesn't create a macro component if an inline
macro is encountered. Rather, it inline-expands the components defined in the macro URI. In
other words, it works as if you type the content of the inline macro directly to the target page.

use.zul: (target page) Equivalent page:
<?component name="username" inline="true" macro- <grid>
uri="username.zul"?> <rows>
<grid> <row>

<rows> Username

<username id="ua" name="John"/> <textbox id="ua" value="John"/>

</rows> </row>

</grid> </rows>
</grid>

username.zul: (macro definition)
All properties, including id, are passed to the

inline macro.

<row>

Username

<textbox id="${arg.id}" value="${arg.name}"/>
</row>

On the other hand, ZK will create a real component (called a macro component) to represent the
regular macro. That is, the macro component is created as the parent of the components that are
defined in the macro.

Inline macros are easier to integrate into sophisticated pages. For example, you cannot use

50 Inline macro components are added since ZK 2.3.

ZK: Developer's Guide Page 163 of 211 Potix Corporation

regular components in the previous example since rows accepts only row, not macro components.
It is easier to access to all components defined in a macro since they are in the same ID space. It
also means the developers must be aware of the implementation to avoid name conflicts.

Regular macros allow the component developers to provide additional API and hide the
implementation from the component users. Each regular macro component is an ID space owner,
so there is no name conflicts. The users of regular macros usually assume nothing about the
implementation. Rather, they access via the well-defined API.

An Example

inline.zul: (the macro definition)

<row>
<textbox value="${arg.coll}"/>
<textbox value="${arg.col2}"/>
</row>

useinline.zul: (the target page)

<?component name="myrow" macro-uri="inline.zul" inline="true"?>
<window title="Test of inline macros" border="normal">
<zscript><! [CDATA[
import org.zkoss.util.Pair;

List infos = new LinkedList();

for (int j = 0; j < 10; ++3) {
infos.add(new Pair ("A"™ + j, "B" + j));

}

]1></zscript>

<grid>
<rows>

<myrow coll="${each.x}" col2="${each.y}" forEach="${infos}"/>

</rows>

</grid>

</window>

Regular Macros

ZK created a real component (called a macro component) to represent the regular macro as
described in the previous section.

For sake of convenience, when we talk about macro components in this section, we mean the
regular macro components.

Macro Components and The ID Space

Like window, @ macro component is an ID space owner. In other words, it is free to use
whatever identifiers to identify components inside the page implementing a macro

ZK: Developer's Guide Page 164 of 211 Potix Corporation

component (aka., child components of the macro component). They won't conflict with
components defined in the same page with the macro component.

For example, assume we have a macro defined as follows.

<hbox>
Username: <textbox id="who" value="${arg.who}"/>
</hbox>

Then, the following codes work correctly.

<?component name="username" macro-uri="/WEB-INF/macros/username.zul"?>
<zk>

<username/>

<button id="who"/> <!-- no conflict because it is in a different ID space -->
</zk>

However, the following codes don't work.

<?component name="username" macro-uri="/WEB-INF/macros/username.zul"?>
<username id="who"/>

Why? Like any ID space owner, the macro component itself is in the same ID space with its
child components. There are two alternative solutions:

1. Use a special prefix for the identifiers of child components of a macro component. For
example, "mc_who" instead of "who".

<hbox>
Username: <textbox id="mc_ who" value="${arg.who}"/>
</hbox>

2. Use the window component to create an additional ID space.

<window>
<hbox>
Username: <textbox id="who" value="${arg.who}"/>
</hbox>
</window>

The first solution is suggested, if applicable, due to the simplicity.

Access Child Components From the Outside

Like other ID space owner, you can access its child component by use of two getFellow
method invocations or org.zkoss.zk.ui.Path.

For example, assume you have a macro component whose ID is called "username", and
then you can access the textbox as follows.

comp.getFellow ("username") .getFellow ("mc_who");
new Path ("/username/mc_who");

ZK: Developer's Guide Page 165 of 211 Potix Corporation

Access Variables Defined in the Ancestors

Macro components work as inline-expansion. Thus, like other components, a child
component (of a macro component) can access any variable defined in the parent's ID
space.

For example, username's child component can access v directly.

<zscript>

String v = "something";
</zscript>
<username/>

However, it is not recommended to utilize such visibility because it might limit where a
macro can be used.
Change macro-uri At the Runtime

You can change the macro URI dynamically as follows.

<username id="ua"/>
<button onClick="ua.setMacroURI ("another.zul")"/>

Provide Additional Methods

A macro component implements the org.zkoss.zk.ui.ext.DynamicPropertied interface,
SO you can access its properties by use of the getDynamicProperty methods as follows.

<username id="ua" who="John"/>
<button label="what?" onClick="alert (ua.getDynamicProperty ("who"))"/>

Obviously, using DynamicPropertied is tedious. Worse of all, the macro's child components
won't be changed if you use setDynamicProperty to change a property. For example, the
following codes still show John as the username, not Mary.

<username id="ua" who="John"/>
<zscript>

ua.setDynamicProperty ("who", "Mary");
</zscript>

Why? All child components of a macro component are created when the macro component is
created, and they won't be changed unless you manipulate them manually®!. Thus, the
invocation to setDynamicProperty affects only the properties stored in a macro component
(which you can retrieve with getDynamicProperties). The content of textbox remains
intact.

Thus, it is better to provide a method, say setWho, to manipulate the macro component

51 On the other hand, the child components included by the include component is created in the rendering
phase. In addition, all child components are removed and created each time the include component is
invalidated.

ZK: Developer's Guide Page 166 of 211 Potix Corporation

directly. To provide your own methods, you have to implement a class for the macro
components, and then specify it in the class attribute of the component directive.

Tip: To recreate child components with the current properties, you can use the recreate
method. It actually detaches all child components, and then create them again.

There are two ways to implement a class. The details are described in the following sections.

Provide Additional Methods in Java
It takes two steps to provide additional methods for a macro component.

1. Implement a class by extending from the org.zkoss.zk.ui.HtmlMacroComponent
class.

//Username. java

package mypack;

public class Username extends HtmlMacroComponent {
public void setWho (String name) {

setDynamicProperty ("who", name); //arg.who requires it
final Textbox tb = (Textbox)getFellow("mc_who");
if (tb != null) tb.setValue (name); //correct the child if available

}
public String getWho () {
return (String)getDynamicaProperty ("who") ;

« As depicted above, you have to call setDynamicProperty in setWho, because
${arg.who} is referenced in the macro page (${arg.who}), which is used when
a macro component are creating its child components.

+ Since the setWwho method might be called before a macro component creates
its children, you have to check whether mc_who exists.

+ Since mc who's setValue is called, both the content and the visual presentation
at the client are updated automatically, when setwho is called.

2. Declare the class in the macro declaration with the class attribute.

<?component name="username" macro-uri="/WEB-INF/macros/username.zul"

class="mypack.Username"?>

Provide Additional Methods in zscript

In addition to implementing with a Java file, you can implement the Java class(es) in
zscript. The advantage is that no compilation is required and you can modify its content
dynamically (without re-deploying the Web application). The disadvantage is the
performance downgrade and prone to typos.

ZK: Developer's Guide Page 167 of 211 Potix Corporation

It takes a few steps to implement a Java class in zscript.

1. You have to prepare a zscript file, say /zs/username.zs, for the class to
implement. Notice that you can put any number of classes and functions in the
same zscript file.

//username.zs
package mypack;
public class Username extends HtmlMacroComponent ({
public void setWho (String name) {
setDynamicProperty ("who", name);
Textbox tb = getFellow ("mc_who");
if (tb != null) tb.setValue (name) ;
}
public String getWho () {
return getDynamicProperty ("who");

2. Use the init directive to load the zscript file, and then declare the component

<?init zscript="/zs/username.zs"?>
<?component name="username" macro-uri="/WEB-INF/macros/username.zul"
class="mypack.Username"?>

The implementation class (mypack.Username in the previous example) is resolved as late
as the macro component is really used, so it is also OK to use the zscript element to
evaluate the zscript file.

<?component name="username" macro-uri="/WEB-INF/macros/username.zul"
class="mypack.Username"?>

<zk>
<zscript src="/zs/username.zs"/>
<username/>

</zk>

Though subjective, the init directive is more readable.

Override the Implementation Class When Instantiation

Like any other component, you can use the use attribute to override the class used to
implement a macro component for any particular instance.

<?component name="username" macro-uri="/WEB-INF/macros/username.zul"
class="mypack.Username?>

<username use="another.MyAnotherUsername/>

Of course, you have to provide the implementation of another.MyAnohterUsername in the
above example. Once again the class can be implemented with separate Java file, or by
use of zscript.

ZK: Developer's Guide Page 168 of 211 Potix Corporation

Create a Macro Component Manually

To create a macro component manually, you have to invoke the afterCompose method
after all the initialization as follows.

HtmlMacroComponent ua = (HtmlMacroComponent)

page.getComponentDefinition ("username", false).newlInstance (page);
ua.setParent (wnd) ;
ua.applyProperties(); //apply properties defined in the component definition
ua.setDynamicProperty ("who", "Joe");
ua.afterCompose(); //then the ZUML page is loaded and child components are created

Note: The getComponentDefinition method is used to look up the component
definitions defined in a page.

If you implement a class, say Username, for the macro, then you can do as follow.

Username ua = new Username () ;
ua.setWho ("Joe") ;
ua.setParent (wnd) ;
ua.afterCompose () ;

ZK: Developer's Guide Page 169 of 211 Potix Corporation

10. Advanced Features

This chapter describes the advance topics about components and pages.

Identify Pages

All pages in the same desktop could be accessed in an event listener. For the current page of a
component, you could use the getPage method in the org.zkoss.zk.ui.Component interface.

To get a reference to another page, you first have to assign an identifier to the page being looked
for.

<?page id="another"?>

Then, you could use the getPage method in the org.zkoss.zk.ui.Desktop interface as follows.

<zscript>
Page another = self.getDesktop().getPage ("another");
</zscript>
Identify Components

Components are grouped by the ID spaces. The page itself is an ID space. The window component
is another ID space. Assume you have a page called P, the page have a window called A, and the
window A has a child window B. Then, if you want to retrieve a child component, say C, in the
window B. Then, you could do as follows.

|comp.getDesktop().getPage("P").getFellow("A").getFellow("B").getFellow("C"); |

The getFellow method is used to retrieve any fellow in the same ID space. Refer to the ID Space
section in the Basics chapter for the concept of ID spaces.

The Component Path

Like a path in a file system, a component path is a catenation of IDs of components along ID
spaces. In the above example, the path will be "/A/B/C". In other words, the root of a
component path is the current page. If you want to identity another page, you have to use
"//". In the above example, the path can also be expressed as "//P/A/B/C".

The org.zkoss.zk.ui.Path class is, like java.io.File, provided to simplify the
manipulation of component paths. Thus, the following statement is equivalent to the above
example.

|Path.getComponent("/A/B/C"); //assume the current page is P |

ZK: Developer's Guide Page 170 of 211 Potix Corporation

’Path.getComponent("//P/A/B/C"); |

In addition to static methods, you could instantiate a Path instance.

Path parent = new Path("//P/A");
new Path (parent, "B/C").getComponent () ;

Sorting

The list returned from the getChildren method of the org.zkoss.zk.ui.Component interface is
live. So is the getItems method of the org.zkoss.zul.Listbox interface and others. In other
words, you can manipulate it content directly. For example, the following statements are
equivalent:

comp.getChildren () .remove (0) ;
((Component) comp.getChildren () .get (0)) .setParent (null);

However, you cannot use the sort method of the java.util.Collections class to sort them. The
reason is subtle: the list of children automatically removes a child from the original position, when
you add it to another position. For example, the following statement actually moves the second
child in front of the first child.

|comp.getChildren().add(O, comp.getChildren () .get (1)) ; |

It behaves differently from a normal list (such as LinkedList), so the sort method of Collections
won't work.

To simplify the sorting of components, we therefore provide the sort method in the
org.zkoss.zk.ui.Components class that works with the list of children.

In the following example, we utilize the sort method and the
org.zkoss.zul.ListitemComparator to provide the sorting for a list box.

Notice that this is only for illustration because list boxes support sorting of list items directly.
Refer to the Sorting subsection of the List Boxes section in the ZUML with the XUL
Component Set chapter.

<window title="Sort Listbox" border="normal" width="200px"> m_

<vbox> name gender
<listbox id="1"> Mary EEMALE
<listhead> John MALE
<listheader label="name"/> Jane FEMALE
] Henry MALE
<listheader label="gender"/>
[(sort1 | [Sertz2
</listhead>
<listitem>

<listcell label="Mary"/>
<listcell label="FEMALE"/>
</listitem>
<listitem>

ZK: Developer's Guide Page 171 of 211 Potix Corporation

<listcell label="John"/>
<listcell label="MALE"/>
</listitem>
<listitem>
<listcell label="Jane"/>
<listcell label="FEMALE"/>
</listitem>
<listitem>
<listcell label="Henry"/>
<listcell label="MALE"/>
</listitem>
</listbox>
<hbox>
<button label="Sort 1" onClick="sort(l, 0)"/>
<button label="Sort 2" onClick="sort(l, 1)"/>
</hbox>
</vbox>
<zscript>
void sort(Listbox 1, int Jj) {
Components.sort(l.getItems (), new ListitemComparator(j)):;
}
</zscript>
</window>

Browser's Information and Controls

To retrieve the information about the client, you can register an event listener for the
onClientInfo event at a root component. To control the behavior of the client, you can use the
utilities in the org.zkoss.zk.ui.util.Clients class.

The onClientInfo Event

Sometimes an application needs to know the client's information, such as time zone. Then,
you can add an event listener for the onClientInfo event. Once the event is added, the
client will send back an instance of the org.zkoss.zk.ui.event.ClientInfoEvent class,
from which you can retrieve the information of the client.

<grid onClientInfo="onClientInfo (event)">
<rows>
<row>Time Zone <label id="tm"/></row>
<row>Screen <label id="scrn"/></row>
</rows>

<zscript>

void onClientInfo (ClientInfoEvent evt) ({
tm.setValue (evt.getTimeZone () .toString()) ;
scrn.setValue (

ZK: Developer's Guide Page 172 of 211 Potix Corporation

evt.getScreenWidth () +"x"+evt.getScreenHeight () +"x"+evt.getColorDepth());
}
</zscript>
</grid>

Note: The onClientInfo event is meaningful only to the root component (aka., a
component without any parent).

The client information is not stored by ZK, so you have to store it manually if necessary.
Since a session is associated with the same client, you can store the client info in the
session's attribute.

Isession.setAttribute("px_preferred_time_zone", event.getTimeZone ()) ; |

Notice that, if you store a time zone as a session variable called px preferred time zone,
then its value will be used as the default time zone thereafter. Refer to the Time Zone
section in the Internationalization chapter.

Notice that the onClientInfo event is sent from the client after the page is rendered (and
sent to the client). Thus, if some of your component's data depends on the client's info, say,
time zone, you might have to ask the client to re-send the request as follows.

import org.zkoss.util.TimeZones;

if (!TimeZones.getCurrent () .equals (event.getTimeZone ())
Executions.sendRedirect (null) ;

The org.zkoss.ui.util.Clients Class

Utilities to control the client's visual presentation (more precisely, the browser window) are
put in org.zkoss.ui.util.Clients collectively. For example, you can scroll the browser
window (aka., the desktop) as follows.

|Clients.scrollBy(100, 0);

Prevent User From Closing a Window

In some situation, you might want to prevent or, at least, alert an user when he tries to
close the window or browse to another URL. For example, when an user is composing a mail
that is not saved yet.

if (mail.isDirty()) {

Clients.confirmClose ("Your message has not been sent.\nDiscard your message?");
} else {

Clients.confirmClose (null) ;

}

Once the confirmClose method is called with a non-empty string, a confirmation dialog is
shown up when the user tries to close the browser window, reload, or browse to another
URL:

ZK: Developer's Guide Page 173 of 211 Potix Corporation

""" Ian'It Wiew
----- The onChanging event .
----- Radio and Checkboxes

----- Comboboxes

_____ Mare comboboxes ! | Are you sure you want to navigate away from this page?

_____ ET;QSESOXES Your message has not been sent.

----- The onScrolling event Discard your message?

lodal Dialogs

----- Messagebox Press OK to continue, or Cancel to stay on the current page.

----- Fileupload

----- Modal dialog € ok) (Cancel) message?");
ayout Elements — '
----- The box model | | | </button=>

Browser's History Management

In traditional multi-page Web applications, user usually use the BACK and FORWARD button to
surf around multiple pages, and bookmark them for later use. With ZK, you still can use multiple
pages to represent different set of features and information, as you did in traditional Web
applications.

However, it is common for ZK applications to represent a lot of features in one desktop, which
usually take multiple Web pages in a traditional Web application. To make user's surfing easier,
ZK supports the browser's history management that enables ZK applications to manage browser's
history simply in the server.

The concept is simple. You add items for appropriate states of a desktop to the browser's history,
and then users can use the BACK and FORWARD button to surf around different states of the same
ZK desktop. When users surf around these states, an event called onBookmarkChanged is sent to
notify the application.

From application's viewpoint, it takes two steps to manage the browser's history:
1. Add an item to the browser's history for each of the appropriate states of your desktop.

2. Listen to the onBookmarkChanged event and manipulate the desktop accordingly.

Add the Appropriate States to Browser's History

Your application has to decide what are the appropriate states to add to the browser's
history. For example, in a multi-step operation, each state is a good candidate to add to
browser's history, such that users can jump over these states or bookmark them for later
use.

Once you decide when to add a state to the browser's history, you can simply invoke the
setBookmark method of the org.zkoss.zk.ui.Desktop interface when appropriate. Adding
a state to the browser's history is called bookmarking. Notice that it is not the bookmarks

ZK: Developer's Guide Page 174 of 211 Potix Corporation

that users add to the browser (aka., My Favorites in Internet Explorer).

Tip: You might call the adding state in the server as the server's bookmarks in contrast
with the browser's bookmarks.

For example, assume you want to bookmark the state when the Next button is clicked, then
you do as follows.

|<button label="Next" onClick="desktop.setBookmark ("Step-2")"/> |

If you look carefully at the URL, you will find ZK appends #step-2 to the URL.

[c http://localhost/zkdemo/test/bookmark.zul# Step-2

If you press the BACK button, you will see as follows.

a http://localhost/zkdemo/test/bockmark.zul

Listen to the onBookmarkChanged Event and Manipulate the Desktop Accordingly

After adding a state to the browser's history, users can then surf among these states such as
pressing the BACK button to return the previous state. When the state is changed, zZK will
notify the application by broadcasting the onBookmarkChanged event (an instance of the
org.zkoss.zk.ui.event.BookmarkEvent class) to all root components in the desktop.

Unlike traditional multi-page Web applications, you have to manipulate the ZK desktop
manually when the state is changed. It is application developer's job to manipulate the
desktop to reflect the state that a bookmark represented.

To listen the onBookmarkChanged event, you can add an event listener to any page of the
desktop, or to any of its root component.

<window onBookmarkChanged="goto (event.bookmark) ">
<zscript>
void goto (String bookmark) {
if ("Step-2".equals (bookmark)) {
...//create components for Step 2
} else { //empty bookmark
...//create components for Step 1
}

</zscript>

</window>

Like handling any other events, you can manipulate the desktop as you want, when the
onBookmarkChanged event is received. A typical approach is to use the createComponents
method of the org.zkoss.zk.ui.Executions class. In other words, you can represent each
state with one ZUML page, and then use createComponents to create all components in it
when onBookmarkChanged is received.

|if ("Step-2".equals (bookmark)) {

ZK: Developer's Guide Page 175 of 211 Potix Corporation

//1. Remove components, if any, representing the previous state
try {

self.getFellow ("replacable") .detach();
} catch (ComponentNotFoundException ex) {

//not created yet

//2. Creates components belonging to Step 2
Executions.createComponents ("/bk/step2.zul", self, null);

A Simple Example

In this example, we bookmarks each tab selection.

<window id="wnd" title="Bookmark Demo" width="400px" border="normal">
<zscript>
page.addEventListener ("onBookmarkChanged",
new EventListener () {
public boolean isAsap() {return false;} //doesn't matter
public void onEvent (Event event) throws UiException {
try {
wnd.getFellow (wnd.desktop.bookmark) .setSelected (true) ;
} catch (ComponentNotFoundException ex) {
tabl.setSelected (true);

b
</zscript>

<tabbox id="tbox" width="100%" onSelect="desktop.bookmark = self.selectedTab.id">
<tabs>
<tab id="tabl" label="Tab 1"/>
<tab id="tab2" label="Tab 2"/>
<tab id="tab3" label="Tab 3"/>
</tabs>
<tabpanels>
<tabpanel>This is panel 1</tabpanel>
<tabpanel>This is panel 2</tabpanel>
<tabpanel>This is panel 3</tabpanel>
</tabpanels>
</tabbox>
</window>

Component Cloning

All components are cloneable. In other words, they are implemented java.lang.Cloneable. Thus,
it is simple to replicate components as follows.

ZK: Developer's Guide Page 176 of 211 Potix Corporation

<vbox id="vb">
<listbox id="src" multiple="true" width="200px">
<listhead>
<listheader label="Population"/>
<listheader align="right" label="%"/>
</listhead>
<listitem value="A">
<listcell label="A. Graduate"/>
<listcell label="20%"/>
</listitem>
<listitem value="B">
<listcell label="B. College"/>
<listcell label="23%"/>
</listitem>
<listitem value="C">
<listcell label="C. High School"/>
<listcell label="40%"/>
</listitem>
</listbox>

<zscript>

int cnt = 0;

</zscript>

<button label="Clone">
<attribute name="onClick">

Listbox 1 = src.clone():;

l.setId("dst" + ++cnt);

vb.insertBefore(l, self);
</attribute>

</button>

</vbox>

® Once a component is cloned, all its children and descendants are cloned, too.

® The cloned component doesn't belong to any page and parent. In other words,
src.clone () .getParent () returns null.

® ID is not changed, so you remember to change ID if you want to add it back to the same
ID space.

Component Serialization

All components are serializable, so you can serialize components to the memory or other storage
and de-serialize them later. Like cloning, the de-serialized components don't belong to another
page (and desktop). They are also independent of the one being serialized. As illustrated below,
serialization can be used to implement the similar cloning function.

<vbox id="vb">

<listbox id="src" multiple="true" width="200px">
<listhead>
<listheader label="Population"/>

ZK: Developer's Guide Page 177 of 211 Potix Corporation

<listheader align="right" label="%"/>
</listhead>
<listitem value="A">
<listcell label="A. Graduate"/>
<listcell label="20%"/>
</listitem>
<listitem value="B">
<listcell label="B. College"/>
<listcell label="23%"/>
</listitem>
<listitem value="C">
<listcell label="C. High School"/>
<listcell label="40%"/>
</listitem>
</listbox>

<zscript>
int cnt = 0;
</zscript>
<button label="Clone">
<attribute name="onClick">
import java.io.*;
ByteArrayOutputStream boa = new ByteArrayOutputStream() ;
new ObjectOutputStream (boa) .writeObject (src);
Listbox 1 = new ObjectInputStream (
new ByteArrayInputStream(boa.toByteArray())) .readObject () ;
l.setId("dst" + ++cnt);
vb.insertBefore (1, self);
</attribute>
</button>
</vbox>

Of course, cloning with the clone method has much better performance, while serialized
components can be used crossing different machines.

Serializable Sessions

By default, a non-serializable implementation is used to represent a session
(org.zkoss.zk.ui.Session). The benefit of using non-serializable implementation is that
application developers need to worry whether the value stored in a component, say,
Listitem's setValue, is serializable.

However, if you are sure all values stored in components are serializable, you can use a
serializable implementation to represent a session.

To configure ZK to use the serializable implementation, you have to configure the ui-
factory-class element in WEB-INF/zk.xml, refer to Appendix B in the Developer's
Reference for more details.

ZK: Developer's Guide Page 178 of 211 Potix Corporation

Inter-Page Communication
Communications among pages in the same desktop is straightforward. First, you can use event to
notify each other. Second, you can use attributes to share data.

Post and Send Events

You could communicate among pages in the same desktop. The way to communicate is to
use the postEvent or sendEvent to notify a component in the target page.

Events.postEvent (new Event ("SomethingHappens",
comp.getDesktop () .getPage ("another") .getFellow ("main")) ;

Attributes

Each component, page, desktop, session and Web application has an independent map of
attributes. It is a good place to share data among components, pages, desktops and even
sessions.

In zscript and EL expressions, you could use the implicit objects: componentScope,

pageScope, desktopScope, sessionScope, requestScope and applicationoScope.

In a Java class, you could use the attribute-relevant methods in corresponding classes to
access them. You could also use the scope argument to identify which scope you want to
access. The following two statements are equivalent, assuming comp is a component.

comp.getAttribute ("some", comp.DESKTOP SCOPE) ;
comp.getDesktop () .getAttribute ("some") ;

Inter-Web-Application Communication

An EAR file could have multiple WAR files. Each of them is a Web application. There are no
standard way to communicate between two Web applications.

However, ZK supports a way to reference the resource from another Web applications. For
example, assume you want to include a resource, say /foreign.zul, from another Web
application, say app2. Then, you could do as follows.

|<include src="~app2/foreign.zul"/> |

Similarly, you could reference a style sheet from another Web application.

|<style src="~app2/foreign.css"/> |

Note: Whether you can access a resource located in another Web application depends on
the configuration of the Web server. For example, you have to specify
crossContext="true" in conf/context.xml, if you are using Tomcat.

ZK: Developer's Guide Page 179 of 211 Potix Corporation

Web Resources from Classpath

With ZK, you could reference a resource that is locatable by the classpath. The advantage is
that you could embed Web resources in a JAR file, which simplifies the deployment.

|

Then, it tries to locate the resource, /my/jar.gif, at the /web directory by searching
resources from the classpath.

Annotations

Annotations provide data about a component that is not part of the component itself. They have
no direct effect on the operation of the component they annotate. Rather, they are mainly used by
a tool or a manager to examine at runtime. The content and meanings of annotations totally
depend on the tool or the manager the developer uses. For example, a data-binding manager
might examine annotations to know the data source that the value of a component will be stored.

Annotations can be applied to declarations of components and properties in ZUML pages.

Annotations of Component Declarations

The annotation appears before the declaration of the element that you want to annotate:

<window xmlns:a="http://www.zkoss.org/2005/zk/annotation">
<vbox>
<a:author name="John Magic" date="3/17/2006"/>
<listbox>
</listbox>

The annotation is an element in the http://www.zkoss.org/2005/zk/annotation
namespace. The element name and attributes can be anything depending on the tool you
use. You can annotate the same component declaration with several annotations:

<a:author name="John Magic"/>
<a:editor name="Mary White" date="4/11/2006"/>
<listbox/>

If the annotations annotating a declaration have the same name, they are merged as a
single annotation. For example,

<a:define varl="auto"/>
<a:define var2="123"/>
<listbox/>

is equivalent to

<a:define varl="auto" var2="123"/>
<listbox/>

ZK: Developer's Guide Page 180 of 211 Potix Corporation

http://www.zkoss.org/2005/zk/annotation
http://www.zkoss.org/2005/zk/annotation

|Note: Annotations don't support EL expressions.

Annotations of Property Declarations

There are two ways to annotate a property. First, you can put the annotation in front of the
declaration of a property:

|<listitem a:bind="datasource='author',name="name'" value="${author.name}"/> |

Alternatively, you can use the attribute element and annotate the declaration of a property
similar to the component declaration. In other words, the above annotation is equivalent to
the following:

<listitem>
<a:bind datasource="author" name="name"/>
<attribute name="value">S${author.name}</attribute>
</listitem>

Annotate Components Created Manually

You can annotate a component at the run time by use of the addannotation method of the
org.zkoss.zk.ui.sys.ComponentCtrl interface.

Listbox listbox = new Listbox();
listbox.addAnnotation ("some", null);

Retrieve Annotations

The annotations can be retrieved back at the runtime. They are usually retrieved by tools,
such as the data-binding manager, rather than applications. In other words, applications
annotate a ZUML page to tell the tools how to handle components for a particular purpose.

The following is an example to dump all annotations of a component:

void dump (StringBuffer sb, Component comp) {

ComponentCtrl compCtrl = (ComponentCtrl)comp;
sb.append (comp.getId()) .append(": ")
.append (compCtrl .getAnnotations()) .append('\n'");
for (Iterator it = compCtrl.getAnnotatedProperties().iterator(); it.hasNext();) {

String prop = it.next();
sb.append (" with ") .append(prop) .append(": ")
.append (compCtrl .getAnnotations (prop)) .append('\n');

ZK: Developer's Guide Page 181 of 211 Potix Corporation

Richlets

A richlet is a small Java program that creates all necessary components in response to user's
request.

When a user requests the content of an URL, the ZK loader checks if the resource of the specified
URL is a ZUML page or a richlet. If it is a ZUML page, then the ZK loader creates components
automatically based on the ZUML page's content as we described in the previous chapters.

If the resource is a richlet, the ZK loader hands over the processing to the richlet. What and how
to create components are all handled by the richlet. In other words, it is the developer's job to
create all necessary components programmingly in response to the request.

The choice between ZUML pages and richlets depends on your preference. For most developers,
ZUML pages are better for the readability and simplicity.

It is straightforward to implement a richlet. First, implement the org.zkoss.zk.ui.Richlet
interface and then declare the association of the richlet with an URL.

Implement the org. zkoss . zk.ui.Richlet interface

All richlets must implement the org.zkoss.zk.ui.Richlet interface. To minimize the
effects of implementing all methods, can extend the org.zkoss.zk.ui.GenericRichlet
class instead. Then, when the specified URL is requested, the service method is called, and
you can create the user interface then.

package org.zkoss.zkdemo;

import org.zkoss.zk.ui.Page;

import org.zkoss.zk.ui.GenericRichlet;
import org.zkoss.zk.ui.event.*;

import org.zkoss.zul.*;

public class TestRichlet extends GenericRichlet {
//Richlet//
public void service (Page page) {
page.setTitle ("Richlet Test");

final Window w = new Window ("Richlet Test", "normal", false);
new Label ("Hello World!") .setParent (w) ;

final Label 1 = new Label();

l.setParent (w) ;

final Button b = new Button ("Change");
b.addEventListener(Events.ON_CLICK,
new EventListener () {
int count;
public boolean isAsap () {
return true;
}

public void onEvent (Event evt) {

ZK: Developer's Guide Page 182 of 211 Potix Corporation

l.setValue("" + ++count);
}
1)

b.setParent (w) ;

w.setPage (page) ;

}

Like servlets, you can implement the init and destroy methods to initialize and to destroy
the richlet when it is loaded. Like servlet, a richlet is loaded once and serves all requests for
the URL it is associated with.

One Richlet per URL

Like servlets, a richlet is created and shared for the same URL. In other words, the richlet
(at least the service method) must be thread-safe. On the other hands, components are
not shareable. Each desktop has an independent set of components. Therefore, it is
generally not a good idea to store components as a data member of a richlet.

There are many ways to solve this issue. A typical one is to use another class for holding
the components for each desktop, as illustrated below.

class MyApp { //one per desktop
Window main;
MyApp (Page page) {
~main = new Window () ;

_main.setPage (page) ;

class MyRichlet extends GenericRichlet {
public void service (Page page) {
new MyApp (page); //create and forget

Configure web.xml and zk.xml

After implementing the richlet, you add the following declaration to zk.xml to assoicate the
richlet with an URL.

<richlet>
<richlet-class>org.zkoss.zkdemo.TestRichlet</richlet-class>
<richlet-url>/test</richlet-url>

</richlet>

By default, the feature of richlets is disabled. You have to add the following declaration to
web.xml to enable it. Once enabled, you can add as many as richlets you want without
modifying web.xml anymore.

ZK: Developer's Guide Page 183 of 211 Potix Corporation

<servlet-mapping>
<servlet-name>zkLoader</servlet-name>
<url-pattern>/zk/*</url-pattern>
</servlet-mapping>

Then, you can visit http://localhost/zk/test to request the richlet.

|Tip: you can specify any values for the richlet-url and url-pattern paramter.

Session Timeout Management

After a session is timeout, all desktops it belongs are removed. If a user keeps accessing the
desktop that no longer exists, an error message will be shown at the browser to prompt user for
the situation.

Sometimes it is better to redirect to another page that gives users more complete description and
guides they to the other resources, or asks them to login again. You can specify the target URI,
that you want to redirect users to when timeout, in zk.xml under WEB-INF directory. For example,
the target URI is /timeout.zul and then you can add the following lines to zk.xml.

<session-config>
<timeout-uri>/timeout.zul</timeout-uri>
</session-config>

Tip: For more information about zk.xml, refer to Appendix B in the Developer's
Reference

In addition to zk.xml, you can change the redirect URI programmingly as follows.

|getWebApp().getConfiguration().setTimeoutURI("/timeout.zul"); |

If you prefer to reload the page instead of redirecting to other URI, you can specify an empty URI
as follows.

<session-config>
<timeout-uri></timeout-uri>
</session-config>

Error Handling

A ZK Web application can specify what to do when errors occur. An error is caused an exception
that is not caught by the application.

An exception might be thrown in two kinds of situations: loading pages and updating pages>?.

52Refer to the Component Lifecycle for more details.

ZK: Developer's Guide Page 184 of 211 Potix Corporation

http://localhost/zk/test

Error Handling When Loading Pages

If an un-caught exception is thrown when loading a ZUML page, it is handled directly by the
Web server. In other words, its handling is no different from other pages, such as JSP.

By default, the Web server displays an error page showing the error message and stack
trace.

HTTP Status 500 -

{7 Exception report
The server encountered an internal error () that prevented it from fulfiling this request.

com.potix.zk.ui.UiException: Recursive import: /test/import.zul
com. ui.metainfo.Parser.parse(Parser.java:200)
com. ui.metainfo.Parser.parse(Parser.java:90)
com. ui.metainfo.PageDefinitions$MyLoader.parse(PageDefinitions. java:186)
com.potix.web.util.resource.Resourceloader.load(Resourceloader.java:94)
com.potix.util.resource.ResourceCache$Info.load(ResourceCache.java:223)
com.potix.util.resource.ResourceCache$Info.<init>(ResourceCache.java:197)
com.potix.util.resource.ResourceCache.get(ResourceCache.java:136)

You can customize the error handling by specifying the error page in WEB-INF/web.xml as
follows. Refer to Java Servlet Specification for more details.

<!-- web.xml -->

<error-page>
<exception-type>java.lang.Throwable</exception-type>
<location>/WEB-INF/sys/error.zul</location>

</error-page>

Then, when an error occurs in loading a page, the Web server forwards the error page you
specified, /error/error.zul. Upon forwarding, the Web server passes a set of request
attributes to the error page to describe what happens. These attribute are as follows.

Request Attribute Type

javax.servlet.error.status code java.lang.Integer

javax.servlet.error.exception type |Jjava.lang.Class

javax.servlet.error.message java.lang.String
javax.servlet.error.exception java.lang.Throwable
javax.servlet.error.request uri java.lang.String
javax.servlet.error.servlet name java.lang.String

Then, in the error page, you can display your customized information by use of these
attributes. For example,

<window title="Error ${requestScope['javax.servlet.error.status code']}">
Cause: ${requestScope|'javax.servlet.error.message']}
</window>

ZK: Developer's Guide Page 185 of 211 Potix Corporation

Note: The error page is created after all events are processed, so events posted during
the creation of the error page are ignored. For example, the event listener for the
onCreate event, which is posted, won't be called. Instead, you have to implement the
org.zkoss.zk.ui.ext.AfterCompose interface instead.

Note: The onModal event is sent (not posted) directly to the top-level component. Thus,
if the top-level component is a window, it will become modal. Of course, you can
intercept it and do whatever you want.

Error Handing When Updating Pages

If an un-caught exception is thrown when updating a ZUML page (aka., when an event
listener is executing), it is handled by the ZK Update Engine. By default, it simply asks the
browser to show up an alert dialog to tell the user.

| source Try me!

<zscript=
throw new NullPointerException{"Unknown value");
=/zscript=

http://localhost

Unknown value

You can customize the error handling by specifying the error page in WEB-INF/zk.xml as
follows. Refer to Appendix B in the Developer's Reference.

<!-- zk.xml -->

<error-page>
<exception-type>java.lang.Throwable</exception-type>
<location>/WEB-INF/sys/error.zul</location>

</error-page>

Then, when an error occurs in an event listener, the ZK Update Engine creates a dialog by
use of the error page you specified, /error/error.zul. The error page's root element must
be window such that it can become a modal dialog.

Like error handling in loading a ZUML page, you can specify multiple <error-page>
elements. Each of them is associated with a different exception type (the value of
<exception-type> element). When an error occurs, ZK will search the error pages one-by-
one until the exception type matches.

In addition, ZK passes a set of request attributes to the error page to describe what
happens. These attribute are as follows.

Request Attribute Type
javax.servlet.error.exception type java.lang.Class
javax.servlet.error.message java.lang.String
javax.servlet.error.exception java.lang.Throwable

ZK: Developer's Guide Page 186 of 211 Potix Corporation

For example, you can specify the following content as the error page.

<window title="Error ${requestScope['javax.servlet.error.status code']}"
width="400px" border="normal">
<vbox>
KillerApp encounters a fatal error, ${requestScope]'javax.servlet.error.message']}.
The error is recorded and we will look at it and fix it soon.
<hbox style="margin-left:auto; margin-right:auto">
<button label="Continue" onClick="spaceOwner.detach()"/>

<pbutton label="Reload" onClick="Executions.sendRedirect (null)"/
</hbox>

</vbox>
<zscript>

org.zkoss.util.logging.Log.lookup ("Fatal") .log(

requestScope.get ("javax.servlet.error.exception”)) ;
</zscript>

</window>

Tip: The error page is created at the same desktop that causes the error, so you can
retrieve the relevant information from it.

Source

<zscripts

throw new NullPointerException{"Unknown wvalue");
<fzscript>

Killerapp encounters a fatal error, Unknown value. The error
is recorded and we will look at it and fix it soon.

ZK: Developer's Guide Page 187 of 211 Potix Corporation

11. Internationalization

This chapter describes how to make ZK applications flexible enough to run in any locale.

First of all, ZK enables developers to embed Java codes and EL expressions any way you like. You
could use any Internationalization method you want, such as java.util.ResourceBundle.

However, ZK has some built-in support of internationalization that you might find them useful.

Locale

The locale used to process requests and events is, by default, determined by the browser's
preferences (by use of the getLocale method of javax.servlet.ServletRequest).

The algorithm to determine the proper locale for a given session is configurable. For example, you
might want to use the same Locale for all requests no matter how the browser is configured.
Another common case is that you want to use the preferred locale that a user specified in his or
her profile, if you maintain user profiles in the server.

There are two ways to provide different locales for different users.

The px_preferred locale Session Attribute

ZK will check if a session attribute called px preferred locale is defined. If defined, it uses
it as the default locale for the session. Thus, you can control the locale of a session by
storing the preferred locale in this attribute, after, say, a user logins.

void login(String username, String password) {
//check password

TimeZone preferredTimeZone = ...; //decide the time zone
session.setAttribute ("px preferred time zone", preferredTimeZone);

Tip: To avoid typo, you can use the constant called PREFERRED LOCALE defined in the
org.zkoss.web.Attributes class.

The Locale Provider

Alternatively, you implement a class, say MylLocaleProvider, that implements the
org.zkoss.zk.sys.LocaleProvider interface to decide the locale dynamically.

public class MyLocaleProvider implements org.zkoss.zk.sys.LocaleProvider ({
public java.util.Locale getLocale(org.zkoss.zk.ui.Session sess) {
...//determine what locale is suitable for sess

ZK: Developer's Guide Page 188 of 211 Potix Corporation

}

Then, you have to specify this class in WEB-INF/zk.xml, refer to Appendix B in the
Developer's Reference for more details.

<system-config>
<locale-provider-class>MyLocaleProvider</locale-provider-class>
</system-config>

Time Zone

The time zone used to process requests and events is, by default, determined by the JVM's
preferences (by use of the getDefault method of java.util.TimeZone).

Note: Unlike locale, there is no standard way to determine the time zone for each
browser.

The algorithm to determine the proper time zone for a given session is configurable. For example,
you might want to use the preferred time zone that a user specified in his or her profile, if you
maintain user profiles in the server.

There are two ways to provide different time zones for different users.

The px_preferred time_ zone Session Attribute

ZK will check if a session attribute called px preferred time zone is defined. If defined, it
uses as the default time zone for the session. Thus, you can control the time zone of a
session by storing the preferred locale in this attribute, after, say, a user logins as depicted
in the previous section.

Tip: To avoid typo, you can use the constant called PREFERRED TIME ZONE defined in the

org.zkoss.web.Attributes class.

The Time Zone Provider

Alternatively, you implement a class, say MyTimeZoneProvider, that implements the
org.zkoss.zk.sys.TimeZoneProvider interface to decide the time zone dynamically.

|T1p:TimeZoneProvider‘hasthefﬂgherpﬁoﬁtythan px_preferred time zone. |

public class MyTimeZoneProvider implements org.zkoss.zk.sys.TimeZoneProvider {
public java.util.TimeZone getTimeZone (org.zkoss.zk.ui.Session sess) {
...//determine what time zone is suitable for sess

}

Then, you have to specify this class in WEB-INF/zk.xml, refer to Appendix B in the

ZK: Developer's Guide Page 189 of 211 Potix Corporation

Developer's Reference for more details.

<system-config>
<timeZone-provider-class>MyTimeZoneProvider</timeZone-provider-class>

</system-config>

Labels

Developers could separate Locale-dependent data from the ZUML pages (and JSP pages) by
storing them in i3-label_lang CNTY.properties under the weB-INF directory, where lang is the
language such as en and fr, and CNTY is the country, such as US and FR.

To get a Locale-dependent property, you could use org.zkoss.util.resource.Labels in Java, or
${c:1('key')} in EL expression. To use it in EL, you have to include the TLD file in your page as
follows.

<%@ taglib uri="/WEB-INF/tld/web/core.dsp.tld" prefix="c" %>
<window title="${c:1('app.title')}">

</window>

File Location: core.dsp.t1d is distributed under the dist/WEB-INF directory.

When a Locale-dependent label is about to retrieved, one of i3-label_/ang_CNTY.properties will be
loaded. For example, if the Locale is de DE, then WEB-INF/i3-label de DE.properties Will be
loaded. If no such file, ZK will try to load WEB-INF/i3-label de.properties and WEB-INF/i3-
label.properties in turn.

To access labels in Java codes (including zscript), use the getLabel method of the

org.zkoss.util.resource.Labels class.

In addition, you could extend the label loader to load labels from other locations, say database, by
registering a locator, which must implement the org.zkoss.util.resource.LabellLocator
interface.

Locale-Dependent Files

Browser and Locale-Dependent URI

Many resources depend on the Locale and, sometimes, the browser that a user is used to
visit the Web page. For example, you need to use a larger font for Chinese characters to
have better readability.

ZK can handle this for you automatically, if you specify the URL of the style sheet with "*".
The algorithm is as follows.

ZK: Developer's Guide Page 190 of 211 Potix Corporation

1.

If there is one "*" is specified in an URI such as /my*.css, then "*" will be replaced
with a proper Locale depending on the preferences of user's browser.

For example, user's preferences is de DE, then ZK searches /my de DE.css,
/my_de.css, and /my.css one-by-one from your Web site, until any of them is found.
If none of them is found, /my.css is still used.

If two or more "*" are specified in an URI such as "/my*/lang*.css", then the first "*"
will be replaced with "ie" for Internet Explorer, "saf" for Safari, and "moz" for other
browsers®. Moreover, the last asterisk will be replaced with a proper Locale as
described in the above step.

In summary, the last asterisk represents the Locale, while the first asterisk
represents the browser type.

3. All other "*" are ignored.

Note: The lat asterisk that represents the Locale must be placed right before the first
dot ("."), or at the end if no dot at all. Furthermore, no following slash (/) is allowed, i.e.,
it must be part of the filename, rather than a directory. If the last asterisk doesn't fulfill
this constraint, it will be eliminated (not ignored).

For example, "/my/lang.css*" is equivalent to "/my/lang.css".
In other words, you can consider it as neutral to the Locale.

Tip: We can apply this rule to specify an URI depending on the browser type, but not
depending on the Locale. For example, "/my/lang*.css*" will be replaced with
"/my/langie.css" if Internet Explorer is the current user's browser.

In the following examples, we assume the preferred Locale is de DE and the browser is
Internet Explorer.

URI Resources that are searched
/css/norm*.css 1. /norm_de_DE.css
2. /norm_de.css
3. /norm.css
/css-*/norm*.css 1. /css-ie/norm_de_DE.css

/css-ie/norm_de.css

/css-ie/norm.css

/img*/pic*/lang*.png

W N

/imgie/pic*/lang_de_DE.png

53 In the future editions, we will use different codes for browsers other than Internet Explorer, Firefox and

Safari.

ZK: Developer's Guide Page 191 of 211 Potix Corporation

URI Resources that are searched
/imgie/pic*/lang_de.png

/imgie/pic*/lang.png
/img/lang.gif
/img/langie.gif
/imgie/lang*.gif

/img*/lang.gif
/img/lang*.gif*

=R, Ww N

/img*/lang*.gif*

Locating Browser and Locale Dependent Resources in Java

In additions to component attributes and ZUML attributes, you could handle browser and
Locale dependent resource programmingly in Java. Here are a list of methods that you could
use.

« The encodeURL, forward, and include methods in org.zkoss.zk.ui.Exection for
encoding URL, forwarding to another page and including a page. In most cases, these
methods are all you need.

+ The locate, forward, and include method in org.zkoss.web.servlet.Servlets for
locating Web resouces. You rarely need them when developing ZK applications, but useful
for writing a servlet, portlet or filter.

+ The encodeURL method in org.zkoss.web.servlet.http.Encodes for encoding URL. You
rarely need them when developing ZK applications, but useful for writing a servlet, portlet
or filter.

+ The locate method in org.zkoss.util.resource.Locators for locating class resources.

Messages

Messages are stored in properties files which are located at the /metainfo/mesqg directory of the
classpath. Each module is associated with an unique name. In addition, the Locale is appended to
the property file, too. For example, the message file of zk.jar for Germany messages is
msgzk de DN.properties OF msgzk de.properties. Currently, zk.jar is only shipped with
English and Chinese versions. You could add your own property files for different Locales by
placing them at the /metainfo/mesqg directory of the classpath.

Chinese Characters and Larger Fonts

The XUL component set provides two sets of style sheet files for each browser type. One with
smaller fonts, while the other with Ilarger fonts. For example, normie.css.dsp and
normie zh.css.dsp are two style sheet files for Internet Explorer with smaller and larger fonts,
respectively.

ZK: Developer's Guide Page 192 of 211 Potix Corporation

By default, it uses only the file with smaller fonts, such as normie.css.dsp®. However, you can
configure it to use the larger font by specifying the following in WEB-INF/zk.xml:

<zk>
<desktop-config>
<disable-default-theme>xul/html</disable-default-theme>
<theme-uri>~./zul/css/norm* zh.css.dsp*</theme-uri>
</desktop-config>
</zk>

If you prefer to use the larger fonts for Chinese characters, while using the smaller fonts for the
rest, you can specify the following:

<zk>
<desktop-config>
<disable-default-theme>xul/html</disable-default-theme>
<theme-uri>~./zul/css/norm**.css.dsp</theme-uri>
</desktop-config>
</zk>

Refer to the Developer's Reference for more about how to configure with WEB-INF/zk.xml.

54 Prior to release 2.3, ZK uses larger fonts for Chinese characters while smaller fonts for the rest of Locales.

ZK: Developer's Guide Page 193 of 211 Potix Corporation

12. Database Connectivity

This chapter describes how to make connections to database.

ZK Is Presentation-Tier Only

ZK is aimed to be as thin as the presentation tier. In addition, with the server-centric approach, it
executes all codes at the server, so connecting database is no different from any desktop
applications. In other words, ZK doesn't change the way you access the database, no matter you
use JDBC or other persistence framework, such as Hibernate®®.

Simplest Way to Use JDBC (but not recommended)

The simplest way to use JDBC, like any JIDBC tutorial might suggest, is to use
java.sql.DriverManager. Here is an example to store the name and email into a MySQL>®
database.

<window title="JDBC demo" border="normal">
<zscript><![CDATA[
import java.sqgl.*;
void submit () {
//load driver and get a database connetion
Class.forName ("com.mysqgl.jdbc.Driver");
Connection conn = DriverManager.getConnection (
"Jdbc:mysql://localhost/test?user=rooté&password=my-password") ;
PreparedStatement stmt = null;
try {
stmt = conn.prepareStatement ("INSERT INTO user values(?, ?)");

//insert what end user entered into database table
stmt.set (1, name.value);
stmt.set (2, email.value);

//execute the statement
stmt.executeUpdate () ;
} finally { //cleanup
if (stmt != null) {
try {
stmt.close () ;
} catch (SQLException ex) {
log.error(ex); //log and ignore

55 http://www.hibernate.org
56 http://www.mysqgl.com

ZK: Developer's Guide Page 194 of 211 Potix Corporation

http://www.mysql.com/
http://www.hibernate.org/

}
if (conn != null) {
try {
conn.close () ;
} catch (SQLException ex) {
log.error(ex); //log and ignore

}

</zscript>

<vbox>
<hbox>Name : <textbox id="name"/></hbox>
<hbox>Email: <textbox id="email"/></hbox>
<pbutton label="submit" onClick="submit ()"/>

</vbox>

</window>

Though simple, it is not recommended. After all, ZK applications are Web-based applications,
where loading is unpredictable and treasurable resources such as database connections have to be
managed effectively.

Luckily, all J2EE frameworks and Web servers support a utility called connection pooling. It is
straightforward to use, while managing the database connections well. We will discuss more in the
next section.

Tip: Unlike other Web applications, it is possible to use DriverManager with ZK, though
not recommended.

First, you could cache the connection in the desktop, reuse it for each event, and close it
when the desktop becomes invalid. It works just like traditional Client/Server
applications. Like Client/Server applications, it works efficiently only if there are at most
tens concurrent users.

To know when a desktop becomes invalid, you have to implement a listener by use of

org.zkoss.zk.ui.util.DesktopCleanup.

Use with Connection Pooling

Connection pooling is a technique of creating and managing a pool of connections that are ready
for use by any thread that needs them. Instead of closing a connection immediately, it keeps them
in a pool such that the next connect request could be served very efficiently. Connection pooling,
in addition, has a lot of benefits, such as control resource usage.

There is no reason not to use connection pooling when developing Web-based applications,
including ZK applications.

The concept of using connection pooling is simple: configure, connect and close. The way to
connect and close a connection is very similar the ad-hoc approach, while configuration depends

ZK: Developer's Guide Page 195 of 211 Potix Corporation

on what Web server and database server are in use.

Connect and Close a Connection

After configuring connection pooling (which will be discussed in the following section), you
could use IJNDI to retrieve an connection as follows.

import java.sqgl.Connection;
import java.sqgl.SQLException;
import java.sqgl.Statement;

import javax.naming.InitialContext;
import javax.sqgl.DataSource;

import org.zkoss.zul.Window;

public class MyWindows extends Window {
private Textbox name, email;
public void onCreate() {
//initial name and email
name = getFellow ("name") ;
email = getFellow ("email");
}
public void onOK() throws Exception {
DataSource ds = (DataSource)new InitialContext ()
.lookup ("java:comp/env/jdbc/MyDB") ;
//Assumes your database is configured and
//named as "java:comp/env/jdbc/MyDB"

Connection conn = null;
Statement stmt = null;
try {

conn = ds.getConnection();

stmt = conn.prepareStatement ("INSERT INTO user values(?, ?)");

//insert what end user entered into database table
stmt.set (1, name.value);
stmt.set (2, email.value);

//execute the statement
stmt.executeUpdate () ;
stmt.close(); stmt = null;
//optional because the finally clause will close it
//However, it is a good habit to close it as soon as done, especially
//you might have to create a lot of statement to complete a job
} finally { //cleanup
if (stmt != null) {
try {
stmt.close () ;
} catch (SQLException ex) {
// (optional log and) ignore

ZK: Developer's Guide Page 196 of 211 Potix Corporation

}
if (conn != null) {
try {
conn.close () ;
} catch (SQLException ex) {
// (optional log and) ignore

« Itis important to close the statement and connection after use.

+ You could access multiple database at the same time by use of multiple connections.

Depending on the configuration and J2EE/Web servers, these connections could even
form a distributed transaction.

Configure Connection Pooling

The configuration of connection pooling varies from one J2EE/Web/Database server to
another. Here we illustrated some of them. You have to consult the document of the server
you are using.

Tomcat 5.5 + MySQL

To configure connection pooling for Tomcat 5.5, you have to edit
$TOMCAT DIR/conf/context.xml®’, and add the following content under the <Context>

element. The information that depends on your installation and usually need to be
changed is marked in the blue color.

<!-- The name you used above, must match exactly here!
The connection pool will be bound into JNDI with the name
"Java:/comp/env/jdbc/MyDB"

-—>

<Resource name="jdbc/MyDB" username="someuser" password="somepass"
url="jdbc:mysqgl://localhost:3306/test"
auth="Container" defaultAutoCommit="false"
driverClassName="com.mysqgl.jdbc.Driver" maxActive="20"
timeBetweenEvictionRunsMillis="60000"
type="javax.sql.DataSource" />

</ResourceParams>

57 Thanks Thomas Muller (http://asconet.org:8000/antville/oberinspector) for correction.

See also http://tomcat.apache.org/tomcat-5.5-doc/jndi-resources-howto.html and
http://en.wikibooks.org/wiki/ZK/How-
Tos/HowToHandleHibernateSessions#Working_with_the_Hibernate_session for more details.

ZK: Developer's Guide Page 197 of 211 Potix Corporation

http://en.wikibooks.org/wiki/ZK/How-Tos/HowToHandleHibernateSessions#Working_with_the_Hibernate_session
http://en.wikibooks.org/wiki/ZK/How-Tos/HowToHandleHibernateSessions#Working_with_the_Hibernate_session
http://tomcat.apache.org/tomcat-5.5-doc/jndi-resources-howto.html
http://asconet.org:8000/antville/oberinspector

Then, in web.xml, you have to add the following content under the <web-app> element as
follows.

<resource-ref>
<res-ref-name>jdbc/MyDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
</resource-ref>

JBoss + MySQL

The following instructions is based on section 23.3.4.3 of the reference manual of MySQL
5.0.

To configure connection pooling for JBoss, you have to add a new file to the directory
called deploy ($JBOSS DIR/server/default/deploy). The file name must end with "-ds
.xm1", which tells JBoss to deploy this file as JDBC Datasource. The file must have the
following contents. The information that depends on your installation and usually need to
be changed is marked in the blue color.

<datasources>
<local-tx-datasource>
<!-- This connection pool will be bound into JNDI with the name
"Java:/MyDB" -->
<jndi-name>MyDB</jndi-name>
<connection-url>jdbc:mysqgl://localhost:3306/test</connection-url>
<driver-class>com.mysqgl.jdbc.Driver</driver-class>
<user-name>someser</user-name>
<password>somepass</password>

<min-pool-size>5</min-pool-size>

<!-- Don't set this any higher than max connections on your
MySQL server, usually this should be a 10 or a few 10's
of connections, not hundreds or thousands -->

<max-pool-size>20</max-pool-size>

<!-- Don't allow connections to hang out idle too long,
never longer than what wait timeout is set to on the
server...A few minutes is usually okay here,

it depends on your application

and how much spikey load it will see -->

<idle-timeout-minutes>5</idle-timeout-minutes>
<!-- If you're using Connector/J 3.1.8 or newer, you can use

our implementation of these to increase the robustness
of the connection pool. -->

ZK: Developer's Guide Page 198 of 211 Potix Corporation

<exception-sorter-class-
name>com.mysql.jdbc.integration. jboss.ExtendedMysglExceptionSorter</exception-
sorter-class—-name>

<valid-connection-checker-class-
name>com.mysql.jdbc.integration.jboss.MysglValidConnectionChecker</valid-
connection-checker-class-name>

</local-tx-datasource>

</datasources>

JBoss + PostgreSQL

<datasources>
<local-tx-datasource>
<!-- This connection pool will be bound into JNDI with the name
"java:/MyDB" -->
<jndi-name>MyDB</jndi-name>

<!-- jdbc:postgresqgl://[servername] : [port]/[database name] -->
<connection-url>jdbc:postgresqgl://localhost/test</connection-url>

<driver-class>org.postgresql.Driver</driver-class>
<user-name>someuser</user-name>
<password>somepass</password>
<min-pool-size>5</min-pool-size>
<max-pool-size>20</max-pool-size>
<track-statements>false</track-statements>
</local-tx-datasource>

</datasources>

ZK Features Applicable to Database Access

The org.zkoss.zk.ui.event.EventThreadCleanup Interface

As emphasized before, it is important to close the connection in the finally clause, such
that every connection will be returned to connection pool correctly.

To make your application more robust, you could implement the
org.zkoss.zk.ui.event.EventThreadCleanup 1interface to <close any pending
connections and statements, in case that some of your application codes might
forget to close them in the finally clause.

However, how to close pending connection and statements really depend on the
server you are using. You have to consult the document of the server for how
to write one.

Tip: In many cases, it is not necessary (and not easy) to provide such method, because
most implementation of connection pooling be recycled a connection if its finalized
method is called.

ZK: Developer's Guide Page 199 of 211 Potix Corporation

Access Database in EL Expressions

In additions to access database in an event listener, it is common to access database to
fulfill an attribute by use of an EL expression. In the following example, we fetch the data
from database and represent them with 1istbox by use of EL expressions.

<zscript>
import my.CustomerManager;
customers = new CustomerManager ().findAll(); //load from database
</script>
<listbox id="personList" width="800px" rows="5">
<listhead>
<listheader label="Name"/>
<listheader label="Surname"/>
<listheader label="Due Amount"/>
</listhead>
<listitem value="S${each.id}" forEach="${customers}">
<listcell label="${each.name}"/>
<listcell label="${each.surname}"/>
<listcell label="${each.due}"/>
</listitem>
</listbox>

There are several way to implement the findall method.

Read all and Copy to a LinkedList

The simplest way is to retrieve all data in the findall method, copy them into a list and
then close the connection.

public class CustomerManager {
public List findAll() throws Exception {
DataSource ds = (DataSource)new InitialContext ()
.lookup ("java:comp/env/jdbc/MyDB") ;

Connection conn = null;
Statement stmt = null;
ResultSet rs = null;
List results = new LinkedList();
try {
conn = ds.getConnection();
stmt = conn.createStatement () ;
rs = stmt.executeQuery ("SELECT id, name, surname FROM customers");
while (rs.next()) {
long id = rs.getInt("id");
String name = rs.getString("name");
String surname = rs.getString("surname");
results.add (new Customer (id, name, surname));
}
return results;
} finally {

ZK: Developer's Guide Page 200 of 211 Potix Corporation

if (rs != null) try { rs.close(); } catch (SQLException ex) [}
if (stmt != null) try { stmt.close(); } catch (SQLException ex) [}
if (conn != null) try { conn.close(); } catch (SQLException ex) [}

Implement the org. zkoss.zk.ui.util.Initiator Interface

Instead of mixing Java codes with the view, you could use the init Directive to load the
data.

<?init class="my.AllCustomerFinder" argO="customers"?>

<listbox id="personList" width="800px" rows="5">
<listhead>
<listheader label="Name"/>
<listheader label="Surname"/>
<listheader label="Due Amount"/>
</listhead>
<listitem value="${each.id}" forEach="${customers}">
<listcell label="${each.name}"/>
<listcell label="${each.surname}"/>
<listcell label="${each.due}"/>
</listitem>
</listbox>

Then, implement the my.CustomerFindAll class with the
org.zkoss.zk.ui.util.Initiator interface.

import org.zkoss.zk.ui.Page;
import org.zkoss.zk.ui.util.Initiator;

public class AllCustomerFinder implements Initiator {
public void doInit (Page page, Object[] args) {
try {
page.setVariable ((String)args[0], new CustomerManager ().findAll());
//Use setVariable to pass the result back to the page
} catch (Exception ex) {
throw UiException.Aide.wrap (ex);

}
public void doCatch (Throwable ex) { //ignore

}
public void doFinally () { //ignore

}

Transaction and org.zkoss.zk.util.Initiator

For sophisticated application (such as distributed transaction), you might have to control the

ZK: Developer's Guide Page 201 of 211 Potix Corporation

lifecyle of a transaction explicitly. If all database access is done in event listeners, there is
nothing to change to make it work under ZK. You start, commit or rollback a transaction the
same way as suggested in the document of your J2EE/Web server.

However, if you want the evaluation of the whole ZUML page (the Component Creation
Phases) is done in the same transaction, then you, as described in the above section, could
implement the org.zkoss.zk.util.Initiator interface to control the transaction lifecycle
for a given page.

The skeletal implementation is illustrated as follows.

import org.zkoss.zk.ui.Page;
import org.zkoss.zk.ui.util.Initiator;

public class TransInitiator implements Initiator {

private boolean err;

public void doInit (Page page, Object[] args) {
startTrans () ; //depending the container, see below

}

public void doCatch (Throwable ex) {
_err = true;
rollbackTrans () ; //depending the container, see below

}
public void doFinally () {
if (! err)

commitTrans (); //depending the container, see below

As depicted, the transaction starts in the doInit method, and ends in the dorFinally
method of the org.zkoss.zk.util.Initiator interface.

How to start, commit and rollback an transaction depends on the container you use.

J2EE Transaction and Initiator

If you are using a J2EE container, you could look up the transaction manager
(javax.transaction.TransactionManager), and then invoke its begin method to start
an transaction. To rollback, invoke its rollback method. To commit, invoke its commit
method.

Web Containers and Initiator

If you are using a Web container without transaction managers, you could start a
transaction by constructing a database connection. Then, invoke its commit and rollback
methods accordingly.

import java.sqgl.*;
import javax.sgl.DataSource;
import javax.naming.InitContext;

ZK: Developer's Guide Page 202 of 211 Potix Corporation

import org.zkoss.util.logging.Log;
import org.zkoss.zk.ui.Page;
import org.zkoss.zk.ui.util.Initiator;

public class TransInitiator implements Initiator {

private Connection conn;

private boolean err;

public void doInit (Page page, Object[] args) {
try |
DataSource ds = (DataSource)new InitialContext ()
.lookup ("java:comp/env/jdbc/MyDB") ;
_conn = ds.getConnection();
} catch (Throwable ex) {
throw UiException.Aide.wrap (ex);

}
public void doCatch (Throwable t) {

if (_conn != null) {
try {
_err = true;

_conn.rollback();
} catch (SQLException ex) {
log.warning ("Unable to roll back", ex);

}
public void doFinally () {

if (_conn != null) {
try |
if (! err)

_conn.commit () ;
} catch (SQLException ex) {
log.warning ("Failed to commit", ex);
} finally {
try {
_conn.close();
} catch (SQLException ex) {
log.warning ("Unable to close transaction",

ZK: Developer's Guide Page 203 of 211

private static final Log log = Log.lookup(TransInitiator.class);

ex) ;

Potix Corporation

13. Portal Integration

ZK provides a portlet to load ZUML pages for JSR 168 compliant portal. This portlet is called ZK
portlet loader, and it is implemented as org.zkoss.zk.ui.http.DHtmlLayoutPortlet.

Configuration

WEB-INF/portlet.xml

To use it, you first have to add the following definition into WEB-INF/portlet.xml. Notice
that expiration-cache must be set to zero to prevent portals from caching the result.

<portlet>
<description>ZK loader for ZUML pages</description>
<portlet-name>zkLoader</portlet-name>
<display-name>ZK Loader</display-name>

<portlet-class>org.zkoss.zk.ui.http.DHtmlLayoutPortlet</portlet-class>

<expiration-cache>0</expiration-cache>

<supports>
<mime-type>text/html</mime-type>
<portlet-mode>VIEW</portlet-mode>
</supports>

<supported-locale>en</supported-locale>

<portlet-info>
<title>ZK</title>
<short-title>ZK</short-title>
<keywords>ZK, ZUML</keywords>
</portlet-info>
</portlet>

WEB-INF/web.xml

ZK portlet loader actually delegates the loading of ZUML pages to ZK loader
(org.zkoss.zk.ui.http.DHtmlLayoutServlet). Thus, you have to configure WEB-
INF/web.xml as specified in Appendix A in the Developer's Reference, even if you want
to use only portlets.

ZK: Developer's Guide Page 204 of 211 Potix Corporation

The Usage

The zk_page and zk_richlet Parameter and Attribute

ZK portlet loader is a generic loader. To load a particular ZUML page, you have to specify
either a request parameter, a portlet attribute or a portlet preference called zk page, if you
want to load a ZUML page, or zk richlet, if you want to load a richlet.

More precisely, ZK portlet loader first checks the following locations for the path of the ZUML
page or the richlet. The lower the number, the higher the priority.

1. The request parameter (RenderRequest's getParameter) called zk page. If found, it
is the path of the ZUML page.

2. The request attribute (RenderRequest's getAttribute) called zk page. If found, it is
the path of the ZUML page.

3. The request preference (RenderRequest'S getPortletPreferences's getValue)
called zk_page. If found, it is the path of the ZUML page.

4, The request parameter (RenderRequest'S getParameter) called zk richlet. If
found, it is the path of the richlet.

5. The request attribute (RenderRequest's getAttribute) called zk richlet. If found,
it is the path of the richlet.

6. The request preference (RenderRequest's getPortletPreferences'S getValue)
called zk_richlet. If found, it is the path of the richlet.

7. The initial parameter (PortletConfig's getInitParameter) called zk page. If found,
it is the path of the ZUML page.

Examples

How to pass a request parameter or attribute to a portlet depends on the portal. You have to
consult the user's guide of your favorite portal for details. The following is an example that
uses Potix Portal.

<layout contentType="text/html">
<title>ZK Porlet Demo</title>
<header name="Cache-Control" value="no-cache"/>
<header name="Pragma" value="no-cache"/>

<vbox>
<hbox>

</hbox>

<servlet page="samplel.zul"/>
<portlet name="zkdemo.zkLoader">

<attribute name="zk page" value="/test/sample2.zul"/>
</portlet>

ZK: Developer's Guide Page 205 of 211 Potix Corporation

</vbox>

<molds uri="~./pxp/html/molds.xml"/>

</layout>
Population Percentage Subject From Received |
Graduate 20% = Intel Snares XML David Needle 7-12-2005 |«
i.Intel Snares XML Ria Coen 7-12-2005 m
High School 409 Unknown chaos
B C# versus Java David Longman 7-10-2005 «

ZK: Developer's Guide Page 206 of 211 Potix Corporation

14. Beyond ZK

In addition to processing ZUML pages, the ZK distribution included a lot of technologies and tools.
This chapter provided the basic information of some of them. Interested readers might look at

Javadoc for detailed API.

Logger

Package: org.zkoss.util.logging.Log

The logger used by ZK is based on the standard logger, java.util.Logger. However, we wrap it

as org.zkoss.util.logging.Log to make it more efficient. The typical use is as follows.

import org.zkoss.util.logging.Log;
class MyClass {
private static final Log log = Log.lookup (MyClass.class);
public void f (Object v) {
if (log.debugable()) log.debug("Value is "+v);

}

}

Since ZK uses the standard logger to log message, you could control what to log by configuring
the logging of the Web server you are using. How to configure the logging of the Web server
varies from one server to another. Please consult the manuals. Or, you might use the logging
configuration mechanism provided by ZK as described below.

How to Configure Log Levels with ZK

In addition to configuring the logging of the Web server, you can use the logging
configuration mechanism provided by ZK. By default, it is disabled. To enable it, you have to
specify the following content in WEB-INF/zk.xml. Refer to Appendix B in the Developer's
Reference fore more details.

<zk>
<log>
<log-base>org.zkoss</log-base>
</log>
</zk>

Alternatively, you can enable the logging configuration mechanism manually by invoking the
init method of LogService as follows.

|org.zkoss.util.logging.LogService.init("org.zkoss"); |
If you want to log not just org.zkoss but everything, you could specify an empty log-base.

Once the mechanism is enabled, ZK looks for i3-1og.conf by searching the classpath at

ZK: Developer's Guide Page 207 of 211 Potix Corporation

startup. If found, ZK loads its content to initialize the log levels. Then, ZK keeps watching
this file, and reloads its content if the file is modified.

Content of i3-1o0g.conf

An example of i3-1og.

conf is as follows.

org.zkoss.zk.ui=0OFF

org.zkoss=WARNING

Allowed Levels

org.zkoss.zk.ui.impl.UiEngineImpl=FINER

#Make the log level of the specified class to FINER
org.zkoss.zk.ui.http=DEBUG

#Make the log level of the specified package to DEBUG
org.zkoss.zk.au.http.DHtmlUpdateServlet=INHERIT

#Clear the log level of a specified class such that it inherits what

#has been defined above (Default: INFO)

#Turn off the log for the specified package

#Make all log levels of ZK classes to WARNING except those specified here

Level Description
OFF Indicates no message at all.
ERROR Indicates providing error messages.
WARNING Indicates providing warning messages. It also implies ERROR.
INFO Indicates providing informational messages. It also implies ERROR
and WARNING.
DEBUG Indicates providing tracing information for debugging purpose. It
also implies ERROR, WARNING and INFO.
FINER Indicates providing fairly detailed tracing information for debugging
purpose. It also implies ERROR, WARNING, INFO and DEBUG
INHERIT Indicates to clear any level being set to the specified package or
class. In other words, the log level will be the same as its parent
node.

Location of i3-1og.conf

At first, ZK looks for this file in the classpath. If not found, it looks for the conf directory.

Application Server

Location

Tomcat

Place i3-1og.conf under the $STOMCAT HOME/conf directory

Others

Try the conf directory first. If not working, you could set the
system property called the org.zkoss.io.conf.dir directory to be
the directory where i3-1og.conf resides.

ZK: Developer's Guide

Page 208 of 211 Potix Corporation

Disable All Logs

Some logs are generated before loading i3-log.conf. If you want to disable all logs
completely, you have to either configure the logging of the Web server®®, or specify log-
level when configuring DHtmlLayoutServlet in WEB-INF/web.xml. Refer to the
Developer's Reference for details.

<servlet>
<servlet-name>zklLoader</servlet-name>
<servlet-class>org.zkoss.zk.ui.http.DHtmlLayoutServlet</servlet-class>
<init-param>
<param-name>log-level</param-name>
<param-value>OFF</param-value>
</init-param>

DSP

Package: org.zkoss.web.servlet.dsp

A JSP-like template technology. It takes the same syntax as that of JSP. Unlike JSP, DSP is
interpreted at the run time, so it is easy to deploy DSP pages. No Java compiler is required in your
run-time environment. In addition, you could distribute DSP pages in jar files. This is the way ZK
is distributed.

However, you cannot embed Java codes in DSP pages. Actions of DSP, though extensible through
TLD files, are different from JSP tags.

If you want to use DSP in your Web applications, you have to set up WEB-INF/web.xml to add the
following lines.

l=="V11//I1 T ==>

<!-- DSP (optional) -->

<servlet>
<description><! [CDATA [

The servlet loads the DSP pages.

]1></description>
<servlet-name>dspLoader</servlet-name>
<servlet-class>org.zkoss.web.servlet.dsp.InterpreterServlet</servlet-class>

<!-- Specify class-resource, if you want to access TLD defined in jar files -->
<init-param>
<param-name>class-resource</param-name>
<param-value>true</param-value>
</init-param>
</servlet>

<servlet-mapping>

58 Remember ZK uses the standard logging utilities. Unless you specify something in i3-1og.conf, and the
default logging levels depend on the Web server (usually INFO).

ZK: Developer's Guide Page 209 of 211 Potix Corporation

<servlet-name>dspLoader</servlet-name>

<url-pattern>*.dsp</url-pattern>

</servlet-mapping>

Note: The mapping of the DSP loader is optional. Specify it only if you want to write Web
pages in DSP syntax.

Though standard components of ZK use DSP as a template technology, they are handled
directly by ZK loader.

init-param

init-param

Description

charset

[Optiona][Default: UTF-8]

Specifies the encoding of the output. If empty is specified, the system
default encoding is used.

class-resource

[Optional][Default: false]

Specifies whether to load resources from the class loader, in addition
to the servlet context.

For example, if it is true and the following line is encountered, it will
search the WEB-INF/t1d/web directory in your Web application first. If
not found and this option is true, it will also ask the class loader to
look for /web/WEB-INF/tld/web/core.dsp.tld.

<%Q@ taglib uri="/WEB-INF/tld/web/core.dsp.tld" prefix="c" %>

This feature is useful if you want to customize a component's DSP,
since you don't have to make a copy of TLD it referenced to your Web
application.

iDOM

Package: org.zkoss.idom

An implementation of W3C DOM. It is inspired by JDOM* to have concrete classes for all XML
objects, such as Element and Attribute. However, iDOM implements the W3C API, such as
org.w3c.dom.Element. Thus, you could use iDOM seamlessly with XML utilities that only accept

the W3C DOM.

A typical example is XSLT and XPath. You could use any of favorite XSL processor and XPath

utilities with iDOM.

59 http://www.jdom.org

ZK: Developer's Guide

Page 210 of 211 Potix Corporation

XAWK

Package: org.zkoss.xawk

Like AWK in Unix, XAWK provided a template-based approach to process XML files. Developers
could specify the condition in regular expression (against XPath) and Java codes to evaluate if the
condition is satisfied. The Java codes are interpreted at the run time by BeanShell.

<rule>
<pattern>/portlet-app/.*/init-param</pattern><!-- condition -->
<begin>aname = avalue = null;</begin><!-- Java codes -->
<end>paramSet.add (aname, avalue);</end><!-- Java codes -->
</rule>

ZK: Developer's Guide Page 211 of 211 Potix Corporation

	1. Introduction
	Traditional Web Applications
	Ad-hoc AJAX Applications
	ZK: What It Is
	ZK: What It Is Not
	ZK: Limitations

	2. Getting Started
	Hello World!
	Interactivity
	The zscript Element
	The Scripting Language
	The Scripting Codes in a Separate File

	The attribute Element
	The EL Expressions
	The id Attribute
	The if and unless Attributes
	The forEach Attribute
	The use Attribute
	Implement Java Classes in zscript

	Create Components Manually
	Developing ZK Applications without ZUML

	Define New Components for a Particular Page

	3. The Basics
	Architecture Overview
	The Execution Flow

	Components, Pages and Desktops
	Components
	Pages
	Page Title

	Desktops
	The createComponents Method

	Forest of Trees of Components
	Component: a Visual Representation and a Java Object
	Identifiers
	UUID

	The ID Space
	Namespace and ID Space
	Variable and Functions Defined in zscript
	getVariable versus getZScriptVariable
	zscript and EL Expressions

	Events
	Desktops and Event Processing
	Desktops and the Creation of Components

	ZUML and XML Namespaces

	4. The Component Lifecycle
	The Lifecycle of Loading Pages
	The Page Initial Phase
	The Component Creation Phase
	The Event Processing Phase
	The Rendering Phase

	The Lifecycle of Updating Pages
	The Request Processing Phase
	The Event Processing Phase
	The Rendering Phase

	The Molds
	Component Garbage Collection

	5. Event Listening and Processing
	Add Event Listeners by Markup Languages
	Add and Remove Event Listeners by Program
	Declare a Member
	Add and Remove Event Listeners Dynamically
	What ASAP Is?
	Add and Remove Event Listeners to Pages Dynamically
	The Invocation Sequence
	Abort the Invocation Sequence

	Send and Post Events from an Event Listener
	Post Events
	Send Events

	Thread Model
	Suspend and Resume
	Long Operations
	Example: A Working Thread Generates Labels Asynchronously
	Another Implementation: No Suspend and Resume

	Initialization and Cleanup of Event Processing Thread
	Initialization Before Processing Each Event
	Cleanup After Processed Each Event

	6. The ZK User Interface Markup Language
	XML
	Elements Must Be Well-formed
	Special Character Must Be Replaced
	Attribute Values Must Be Specified and Quoted
	Comments
	Character Encoding
	Namespace
	Auto-completion with Schema

	Conditional Evaluation
	Iterative Evaluation
	The each Variable
	The forEachStatus Variable
	How to Use each and forEachStatus Variables in Event Listeners
	A Solution: custom-attributes

	Implicit Objects
	List of Implicit Objects
	Information about Request and Execution

	Processing Instructions
	The page Directive
	The component Directive
	The by-macro Format
	The by-class Format

	The init Directive
	The variable-resolver Directive
	The import Directive
	The link and meta Directives

	ZK Attributes
	The use Attribute
	The if Attribute
	The unless Attribute
	The forEach Attribute
	The forEachBegin Attribute
	The forEachEnd Attribute

	ZK Elements
	The zk Element
	Multiple Root Elements in a Page
	Iteration Over Versatile Components

	The zscript Element
	How to Select a Different Scripting Language
	How to Support More Scripting Languages

	The attribute Element
	The variables element
	The custom-attributes element

	Component Sets and XML Namespaces
	Standard Namespaces

	7. ZUML with the XUL Component Set
	Basic Components
	Label
	The pre, hyphen, maxlength and multiline Properties

	Buttons
	The onClick Event and href Property
	The sendRedirect Method of the org.zkoss.zk.ui.Execution Interface

	Radio and Radio Group
	Versatile Layouts

	Image
	Locale Dependent Image

	Imagemap
	Area
	The shape Property

	Audio
	Input Controls
	The type Property
	The format Property
	Constraints
	Customized Constraints
	org.zkoss.zk.ui.WrongValueException
	The onChange Event
	The onChanging event

	Calendar
	The value Property and the onChange Event
	The compact Property

	Progressmeter
	Slider
	Timer
	Paging
	Paging with List Boxes and Grids

	Windows
	Titles and Captions
	The closable Property
	The sizable Property
	The onSize Event

	The Style Class (sclass)
	The contentStyle Property
	Scrollable Window

	Borders
	Overlapped, Popup, Modal and Embedded
	Embedded
	Overlapped
	Popup
	Modal
	Modal Windows and Event Listeners

	Common Dialogs
	The org.zkoss.zul.Messagebox Class
	The org.zkoss.zul.Fileupload Class
	Upload Multiple Files at Once

	The Box Model
	The spacing Property
	The widths and heights Properties
	Splitters
	The collapse Property
	The open Property
	The onOpen Event

	Tab Boxes
	Nested Tab Boxes
	The Accordion Tab Boxes
	The orient Property
	The closable Property
	Create-on-Select for Tab Panels

	Grids
	Scrollable Grid
	Sizable Columns
	The onColSize Event

	Grids with Paging
	The pageSize Property
	The paginal Property
	The paging Property
	The onPaging Event and Method

	Sorting
	The sortDirection Property
	The onSort Event
	The sort Method

	Live Data
	Special Properties
	The spans Property

	More Layout Components
	Separators and Spaces
	Group boxes
	The contentStyle Property and Scrollable Groupbox

	Toolbars

	Menu bars
	Execute a Menu Command
	Use Menu Items as Check Boxes
	The autodrop Property
	The onOpen Event and Load-on-Demand
	More Menu Features

	Context Menus
	Customizable Tooltip and Popup Menus
	The onOpen Event and Load-on-Demand

	List Boxes
	Multi-Column List Boxes
	Column Headers
	Column Footers
	Drop-Down List
	Multiple Selection
	Scrollable List Boxes
	The rows Property

	Sizable List Headers
	List Boxes with Paging
	Sorting
	The sortAscending and sortDescending Properties
	The sortDirection Property
	The onSort Event
	The sort Method

	Special Properties
	The checkmark Property
	The vflex Property
	The maxlength Property

	Live Data
	Sort Live Data
	List Boxes Contain Buttons

	Tree Controls
	The open Property and the onOpen Event
	The onOpen Event and Load-on-Demand
	Multiple Selection
	Special Properties
	The rows Property
	The checkmark Property
	The vflex Property
	The maxlength Property
	Sizable Columns

	Create-on-Open for Tree Controls

	Comboboxes
	The autodrop Property
	The description Property
	The onOpen Event and Load-on-Demand
	The onChanging Event

	Bandboxes
	The closeDropdown Method
	The autodrop Property
	The onOpen Event and Load-on-Demand
	The onChanging Event

	Chart
	Live Data
	Drill Down (The onClick Event)
	Manipulate Areas

	Drag and Drop
	The draggable and droppable Properties
	The onDrop Event
	Multiple Types of Draggable Components

	HTML Relevant Components
	The style Component
	The html Component
	Mix the HTML and XUL Components
	The include Component
	Including ZUML Pages

	The iframe Component

	Work with HTML FORM and Java Servlets
	The name Property
	Components that Support the name Property
	Rich User Interfaces

	Client Side Actions
	Reference to a Component
	An onfocus and onblur Example
	Coercion Rules

	The onshow and onhide Actions
	An Example to Change How a Window Appears

	CSA JavaScript Utilities
	The action Object
	The anima Object

	Events
	Mouse Events
	Keystroke Events
	The ctrlKeys Property

	Input Events
	List and Tree Events
	Slider and Scroll Events
	Other Events
	The Event Flow of radio and radiogroup

	8. ZUML with the XHTML Component Set
	The Goal
	A XHTML Page Is A Valid ZUML Page
	Server-Centric Interactivity
	Servlets Work As Usual

	The Differences
	UUID Is ID
	Side Effects

	All Tags Are Valid
	Case Insensitive
	No Mold Support

	The DOM Tree at the Browser
	The TABLE and TBODY Tags

	Events
	Integrate with JSF, JSP and Others
	Work with Existent Servlets
	Enrich by Inclusion
	Enrich a Static HTML Page
	Enrich a Dynamically Generated Page
	XUL or XHTML

	9. Macro Components
	Three Steps to Use Macro Components
	Step 1. The Implementation
	Step 2. The Declaration
	Other Properties

	Step 3. The Use
	Pass Properties
	arg.includer

	Inline Macros
	An Example

	Regular Macros
	Macro Components and The ID Space
	Access Child Components From the Outside
	Access Variables Defined in the Ancestors
	Change macro-uri At the Runtime

	Provide Additional Methods
	Provide Additional Methods in Java
	Provide Additional Methods in zscript
	Override the Implementation Class When Instantiation
	Create a Macro Component Manually

	10. Advanced Features
	Identify Pages
	Identify Components
	The Component Path

	Sorting
	Browser's Information and Controls
	The onClientInfo Event
	The org.zkoss.ui.util.Clients Class
	Prevent User From Closing a Window

	Browser's History Management
	Add the Appropriate States to Browser's History
	Listen to the onBookmarkChanged Event and Manipulate the Desktop Accordingly
	A Simple Example

	Component Cloning
	Component Serialization
	Serializable Sessions

	Inter-Page Communication
	Post and Send Events
	Attributes

	Inter-Web-Application Communication
	Web Resources from Classpath

	Annotations
	Annotations of Component Declarations
	Annotations of Property Declarations
	Annotate Components Created Manually
	Retrieve Annotations

	Richlets
	Implement the org.zkoss.zk.ui.Richlet interface
	One Richlet per URL

	Configure web.xml and zk.xml

	Session Timeout Management
	Error Handling
	Error Handling When Loading Pages
	Error Handing When Updating Pages

	11. Internationalization
	Locale
	The px_preferred_locale Session Attribute
	The Locale Provider

	Time Zone
	The px_preferred_time_zone Session Attribute
	The Time Zone Provider

	Labels
	Locale-Dependent Files
	Browser and Locale-Dependent URI
	Locating Browser and Locale Dependent Resources in Java

	Messages
	Chinese Characters and Larger Fonts

	12. Database Connectivity
	ZK Is Presentation-Tier Only
	Simplest Way to Use JDBC (but not recommended)
	Use with Connection Pooling
	Connect and Close a Connection
	Configure Connection Pooling
	Tomcat 5.5 + MySQL
	JBoss + MySQL
	JBoss + PostgreSQL

	ZK Features Applicable to Database Access
	The org.zkoss.zk.ui.event.EventThreadCleanup Interface
	Access Database in EL Expressions
	Read all and Copy to a LinkedList
	Implement the org.zkoss.zk.ui.util.Initiator Interface

	Transaction and org.zkoss.zk.util.Initiator
	J2EE Transaction and Initiator
	Web Containers and Initiator

	13. Portal Integration
	Configuration
	WEB-INF/portlet.xml
	WEB-INF/web.xml

	The Usage
	The zk_page and zk_richlet Parameter and Attribute
	Examples

	14. Beyond ZK
	Logger
	How to Configure Log Levels with ZK
	Content of i3-log.conf
	Allowed Levels

	Location of i3-log.conf
	Disable All Logs

	DSP
	init-param

	iDOM
	XAWK

